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Abstract Type classes and overloading are shown to be independent
concepts that can both be added to simple higher-order logics in the tra-
dition of Church and Gordon, without demanding more logical expres-
siveness. In particular, model-theoretic issues are not affected. Our meta-
logical results may serve as a foundation of systems like Isabelle/Pure
that offer the user Haskell-style order-sorted polymorphism as an ex-
tended syntactic feature. The latter can be used to describe simple ab-
stract theories with a single carrier type and a fixed signature of opera-
tions.

1 Introduction

Higher-order logic (HOL) dates back to Church’s 1940 formulation of the “simple
theory of types” [2], originally intended as foundation of mathematics.

Gordon later extended the system by an object-level first-order language of
types (by including type variables and type constructors), and — most impor-
tantly — definitional mechanisms that guarantee safe theory extensions. Various
implementations of theorem provers based on Gordon’s HOL [4] proved to be
very successful for many applications in computer science and mathematics.

Paulson’s generic theorem proving environment Isabelle is based on an (in-
tuitionistic) version of HOL since Isabelle-89 [11]. In Isabelle-91, a Haskell-like
type system with ordered type classes has been added [9], though without inves-
tigating logical foundation issues very much.

Somewhat later, a conceptual bug concerning the handling of empty classes
was discovered that actually made Isabelle’s meta-logic implementation inconsis-
tent. Embarrassing slips of this kind illustrate why mechanized proof assistants
should be based on well-understood logical frameworks only, lest the “formal”
proofs conducted by users inherit any uncertainty.

The present paper aims to close this foundational gap of Isabelle. Our main
contributions are:
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– An interpretation of type classes in higher-order logic.
– A definitional mechanism for axiomatic type classes.
– A generalization of constant definitions admitting overloading and recursion

over types.

In particular, we will see that type classes have already been implicitly
present in Gordon-like HOL systems all the time. So the seeming extensions
of Isabelle/Pure over basic HOL can be explained just as additional syntactic
features offered for the user’s convenience. What really goes beyond Gordon’s
HOL (extra-logically, though) are overloaded constant definitions.

While the concepts of type classes and overloading can be explained inde-
pendently in HOL, they are closely related in practice: Without type classes as a
syntactic device, overloading tends to become undisciplined. Without overloaded
definitions, type classes could be defined but not instantiated in useful manners.

Although the initial motivation arose in the Isabelle setting, the subsequent
presentation is more general. Our results can be easily applied to similar HOL
systems.

A note on terminology: hol shall refer to the abstract logical system used to
explain the concepts in this paper. The concrete incarnations are Isabelle/Pure
(Isabelle’s meta-logic), Isabelle/HOL (an object-logic within Isabelle/Pure), and
Gordon/HOL. As a quite harmless simplification, hol can also be identified
directly with Isabelle/Pure.

The paper is structured as follows: Section 2 starts with some examples of
using type classes, without giving any formal background. Section 3 sketches the
syntax and deductive system of the hol logic. Section 4 discusses the issue of safe
theory extension in general and concludes with generalized constant definitions
including overloading and recursion over types. Section 5 introduces type classes
and their interpretation in hol. Section 6 concludes with safe mechanisms for
definition and instantiation of axiomatic type classes.

2 Examples of Using Type Classes

2.1 Type Classes in Programming Languages

We quickly review some aspects of type classes in languages like Haskell [6].
Within a setting of this kind, classes are supposed to describe collections

of types that provide (or implement) operations of certain names and types.
For example, consider the following class definition (modulo concrete Haskell-
syntax):

class ord
≤ :: αord → αord → bool
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Class ord requires of its instances τ to provide some relation ≤ :: τ → τ → bool .
This is witnessed in the instance construct by a suitable definition. For example:

instance nat :: ord
xnat ≤ ynat ≡ nat le

Nothing more specific is required of ≤ :: nat → nat → bool than its type. From
the chosen name ≤, everyone will think of it as some order, of course. This shall
be implemented appropriately by above program text nat le.

So we observe that Haskell type classes can be viewed as the signature part
of simple algebraic structures consisting of one carrier type and associated oper-
ations (or member functions). Additional semantic properties (or class axioms)
may come in as mere convention.

Speaking in terms of the example above, the concrete instance can be under-
stood as a poset structure (nat ,≤nat).

2.2 Type Classes in hol

The Haskell notion that instances of type classes provide operations of certain
names and types is not amenable to logical systems like hol. One just cannot
express within the logic if objects are declared or meaningful.

Even from an extra-logical point of view, such notions are not very appro-
priate. The hol world is total in the sense that everything of any type is always
meaningful. Even constants of arbitrary type can be safely declared at any time,
without changing very much. In the worst case it may happen that no useful the-
orems can be derived about some objects. Consider the latter just as a boundary
case of loose specification.

We argue that a straightforward interpretation of classes should be simply
as set-theoretic predicates: type classes denote classes of types. A view of classes
as abstract algebras can be still recovered from this frugal interpretation. As an
example consider the following class of orders in hol:

consts ≤ :: α→ α→ prop
class ord

reflexive xα ≤ xα
transitive xα ≤ yα ∧ yα ≤ zα ⇒ xα ≤ zα
antisymmetric xα ≤ yα ∧ yα ≤ xα ⇒ xα = yα

Note that consts above is not actually part of the class definition. The declara-
tion of ≤ just ensures that the class axioms are syntactically well-formed.

The meaning of ord is a type predicate stating that ≤ :: α → α → prop is
an order relation. It does not express anything like “≤ is available on a type” —
this would be trivially true in hol anyway.

Concrete instances τ :: ord are required to have the corresponding ≤ ::
τ → τ → prop specified in such a way, that the order properties are derivable.
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This is typically achieved by means of a constant definition1 prior to the actual
instantiation. As an example consider:

defs xnat ≤ ynat ≡ nat le
instance nat :: ord

Again observe that defs is not part of our instance construct, just as consts had
been independent of class. Assuming that the term nat le expresses a suitable
relation, we are able to derive reflexive, transitive, antisymmetric for type nat
in the theory. Thus the instantiation nat :: ord is justified within the logic.

Note that in concrete system implementations the user will have to provide
the witness theorems for instance explicitly.

Our version of hol definitions not only admit overloading, but also primitive
recursion over types. The latter can be used to mimic lifting of polymorphic
operations. For example, consider the following definition:

defs xα×β ≤ yα×β ≡ fst xα×β ≤ fst yα×β ∧ snd xα×β ≤ snd yα×β

enabling us to derive the order properties of ≤ on α× β, under the assumption
that these already hold on α and β. This justifies an instantiation of the form:

instance × :: (ord , ord) ord

Thus the type operator × can be understood as a functor for direct binary
products of order structures.

Note that overloaded definitions must not overlap. In particular, there may
be at most one equation for the same type scheme. For example, having already
defined ≤ on α×β component-wise rules out to redefine it later as lexicographic
order.

Thus the signature part of the abstract theories that can be described is fixed.
Type classes only have the carrier type as a parameter, but not the operations.

This drawback is not specific to hol, though. Type classes may be only
instantiated once in current Haskell-like languages, too.

More examples and applications of type classes as a light-weight mechanism
of simple abstract theories can be found in the Isabelle library [7], especially in
the HOL and HOL/AxClasses directories. There is also a tutorial on axiomatic
type classes available as part of the Isabelle documentation [15].

Above examples should have illustrated to some extend how the two concepts
of overloaded definitions and type classes can be joined into a practically useful
mechanism. Both can be understood independently in hol, though. The logical
foundations of defs will be explained in §4, especially §4.5. The exact meaning
of class and instance will be given in §6.

1 Which is overloaded in general, because there may be many different instantiations.
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3 The hol Logic

We briefly sketch the syntax and deductive system of our version of hol. The
presentation is somewhat reminiscent of [13], but differs in many details.

3.1 hol Syntax

Types and Terms The syntax of hol is just that of simply-typed λ-calculus
with a first order language of types.

Types are either variables α, or applications (τ1, . . . , τn) t of an n-place con-
structor t applied to types τi. We drop the parentheses for n ∈ {0, 1}. Binary
constructors are often written infix, e. g. function types as τ1 → τ2 (associate to
the right).

Terms are built up from explicitly typed atomic terms (constants cτ or vari-
ables xτ ) through application tu (of type τ2, provided that t : τ1 → τ2 and u : τ1)
and abstraction λxτ1 .t (of type τ1 → τ2, provided that t : τ2). As usual, appli-
cation associates to the left and binds most tightly. An abstraction body ranges
from the dot as far to the right as possible. Nested abstractions like λx. λ y.t are
abbreviated to λx y.t.

Note that atomic terms aτ actually consist of two components: name a and
type τ . In particular, variables xτ1 and xτ2 with the same name but different
types are treated as different.

Furthermore we assume suitable functions TV (on types or terms) and FV
(on terms), yielding the type variables and free term variables of their respective
arguments.

Type Substitutions and Instances Type substitutions [τ1/α1, . . . , τn/αn]
shall be defined as usual. Their application (to types or terms) is written postfix.

For types or terms T , U , we call T a type instance of U (written T ≤ U)
iff there is some substitution δ such that T = Uδ. Given any set A of types or
terms, let A↓ denote the downwardly closed set of all of its type instances.

Theories consist of a signature part (constants and types) together with axioms.
We use a notation like:

Θ2 = Θ1 ∪ (α1, . . . , αn) t ∪ c :: σ ∪ `Φ

meaning that theory Θ2 is the extension of Θ1 by declaring type constructor t
of arity n, constants c :: σ (representing the set cσ↓), and asserting all axioms of
the set Φ.
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We always assume that theories contain at least the following signature:

prop propositions
α→ β functions

⇒ :: prop → prop → prop implication
≡ :: α→ α→ prop equality
∀ :: (α→ prop)→ prop universal quantification

As usual, ∀(λxτ .t) is written as ∀xτ . t. Nested ∀’s are abbreviated like nested λ’s.
Other logical operators (True, False, ∧, etc.) could be introduced in an obvious
way. They sometimes simplify our presentation, without being really necessary.

Any term of type prop is a formula. Our type of propositions is sometimes
called o in the literature, in Gordon/HOL the analogous type is bool .

3.2 The hol Deductive System

Due to space limitations, we do not give a full calculus for hol here. It suffices to
say that given some theory Θ, we have some inductively defined relation Γ `Θ ϕ
of derivable sequents (where antecedents Γ are finite sets of formulas).

We use the usual abbreviations: Γ ` ϕ for Γ `Θ ϕ if Θ is clear from context,
`ϕ for {} ` ϕ, and Γ1, Γ2 ` ϕ for Γ1∪Γ2 ` ϕ, and so on. The full set of inference
rules for `Θ consists of about 15 schemas. As an example we present only two:

Γ ` ψ
Γ \ {ϕ} ` ϕ⇒ ψ

(⇒I)
Γ1 ` ϕ⇒ ψ Γ2 ` ϕ

Γ1, Γ2 ` ψ
(MP)

Thus we get a single-conclusion sequent calculus, similar to the one presented
in [13] for Gordon/HOL. If the rules are chosen suitably, the system may also
be read as natural deduction (which is preferred in the Isabelle literature [12]).
This and other details (e. g. classical vs. intuitionistic hol) do not matter here.
Subsequently, some general idea of what theorems are derivable in higher-order
logic will be sufficient for the level of abstraction of this paper.

4 Meta-level Definitions

The most important contribution of Gordon/HOL [4] over the original formu-
lation of Church [2] are disciplined mechanisms of theory extension. Using only
these instead of unrestricted axiomatizations guarantees that certain nice prop-
erties of theories are preserved.

Such extensions are usually called conservative, definitional, sound etc., of-
ten with some confusion about the exact meaning of these phrases. So before
introducing our generalized constant definitions (cf. §4.5), we set out to discuss
what qualifies extension mechanisms as safe in our hol setting.
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4.1 Consistency Preservation

A theory is called (syntactically) consistent iff not all formulas are derivable. An
inconsistent theory certainly does not have any models, since every formula is a
theorem (including `False). A theory extension mechanism is called consistency
preserving iff any extension of consistent theories is also consistent.

Although being a nice concept, consistency preservation is certainly not the
key property that qualifies theory extensions as safe in the hol setting:

Syntactic consistency of theories is not a very strong property. In particular
it does not necessarily imply existence of suitable models. This would require
completeness of the deductive system wrt. the underlying model theory, which
does not generally hold in higher-order logic.

More surprisingly, some kinds of safe extensions do not necessarily preserve
consistency in general — notably Gordon/HOL type definitions, see below.

4.2 Syntactic conservativity

Definition 1. An extension Θ2 of some theory Θ1 is called (syntactically) con-
servative iff for any formula ϕ of signature Θ1 it holds that `Θ2 ϕ⇒ `Θ1 ϕ.

Syntactic conservativity is traditional [1]. It ensures that extensions do not
change derivability of formulas that do not contain any of the newly introduced
syntactic objects (constants and types). It is also very easy to see that syntactic
conservativity implies consistency preservation.

We consider syntactic conservativity as a minimum requirement for well-
behaved extension mechanisms within purely deductive logical frameworks.

4.3 Model Preservation

We briefly review Gordon/HOL’s extension mechanisms and the way they are
justified as conservative [13]. Basically, the system features two kinds of theory
extensions:2

Constant definition Θ2 = Θ1 ∪ c :: σ ∪ ` cσ ≡ t provided that c is new
and does not occur in t, also FV(t) = {} and TV(t) = TV(σ).

Type definition Θ2 = Θ1 ∪ (α1, . . . , αn) t ∪ `(α1, . . . , αn) t ≈ A, where t
is an n-ary type constructor and A is a term representing some set, and
the notation τ ≈ A shall abbreviate some suitable formula stating that τ
is isomorphic to A. The definition shall be well-formed, provided t is new
and does not occur in A, also FV(A) = {}, TV(A) ⊆ {α1, . . . , αn}, and
non-emptiness of A is derivable in Θ1.

2 Actually, Gordon/HOL admits more general forms of (loose) specifications than pre-
sented here. We can ignore this without loss of generality, at the level of abstraction
of this paper.
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Both these mechanisms are justified as being safe extensions because they
preserve Gordon/HOL standard models: If Θ1 has such a model, so does Θ2.
These models are specifically tailored for the Gordon/HOL logic [13] and are
quite special in at least the following ways:

– They are classical.
– They are standard3.
– Types are interpreted from subset-closed universes.

In particular, the last property is the crucial one for type definitions being
safe. We quickly sketch a counterexample where Gordon/HOL type definitions
do not preserve syntactic consistency.

Consider some base theory Θ0 and some formula threeα expressing that α
has cardinality 3. Now let Θ1 = Θ0 ∪ `(threeα ⇒ False). It is easy to see that
Θ1 is consistent: For example one can give a very simple model (non-standard
in the Gordon/HOL-sense) where all interpretations of types are sets of some
cardinality 2k, for k ∈ IN0. Finally let Θ2 = Θ1 ∪ thr ∪ ` thr ≈ {0, 1, 2},
and observe that `Θ2 threethr is derivable, and thus `False. So this theory is
inconsistent!

Furthermore, type definitions are not necessarily syntactically conservative,
even if the theories involved have a Gordon/HOL standard model.

The counterexample is a simple modification of the previous one: Basically,
just substitute some proper constant definition c ≡ t for False. Then it is rela-
tively easy to see that Θ0, Θ1, Θ2 all have standard models. An argument similar
to the one above shows that ` c ≡ t is not derivable in Θ1, but is so in Θ2. That
is, the definition of type thr changed derivability on existing formulas — it is
not syntactically conservative!

Of course nothing is wrong with Gordon/HOL type definitions, as long as one
does not leave the dedicated model theory. The above examples should illustrate,
though, why we cannot justify our extensions in this setting:

Our hol should serve as a meta-logical framework for expressing many dif-
ferent kinds of deductive systems (or object-logics in Isabelle parlance). In other
words, results about safeness of extensions should be applicable to Isabelle/Pure,
not just to particular object-logics like Isabelle/HOL.

Focusing solely on the Gordon/HOL standard model theory here would ba-
sically restrict object-logics to what is known as shallow embeddings in the HOL
community. Then justifying for example full Zermelo-Fränkel set theory in this
framework [3] would be much more difficult than if encoded as a purely deductive
system the Isabelle way.

3 Standard in the sense of [1] which also treats a certain kind of non-standard models.
The latter may interpret τ1 → τ2 as proper subsets of the full function space [[τ1]]→
[[τ2]]. Interestingly, the deductive system of classical HOL is complete wrt. this class
of general models [5].
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4.4 Meta-safe Extensions

We now introduce a notion of safe theory extensions that is more appropriate
for our meta-logical hol setting:

Definition 2. Any extension Θ2 of some theory Θ1 is called meta-safe iff:

– It is syntactically conservative.
– Introduced objects are (syntactically) realizable:

For all new c there is some function r from types to terms, such that r(τ) : τ
and `Θ2 ϕ ⇒ `Θ1 ϕ[r/c], for all ϕ. Here the notation [r/c] shall denote
replacement of any cτ by r(τ).

First observe that because of syntactic conservativity, object-logics are free
to ignore meta-safe extensions, by just not referring to them syntactically.

Syntactic realizability can be seen as a generalized counterpart of model
preservation, always staying within the deductive system of hol, though. Newly
introduced names can be seen as just an abbreviation for pre-existent syntactic
objects that have the same properties (because the same theorems are derivable).

So there are two ways for object-logics to cooperate with meta-safe exten-
sions4: Either just consider all object-level formulations modulo expansion of all
meta definitions, without changing the semantics, or adjust your model theory
to interpret defined objects according to [r/c], utilizing the realization function.

4.5 Overloaded Constant Definitions

Having provided enough preliminaries, we can now present our generalization of
constant definitions:

Overloaded constant definition Θ2 = Θ1 ∪ c :: σ ∪ `∆c, where ∆c is
some set of equations cτ ≡ t. The definition shall be well-formed, provided
that c is new, all FV(t) = {} and TV(τ) = TV(t); furthermore all cτ have
to be instances of cσ, no two different cτ1 , cτ2 may have common instances,
and recursive occurrences of any cτ ′ in some t may be only at such types τ ′

that are strictly simpler than τ in a well-founded sense.

In practice, the strictly simpler notion above will be just structural contain-
ment. Thus we get constant definitions with general primitive recursion over
types. As an example, consider:

0 :: α
` 0nat ≡ zero
` 0α×β ≡ (0α, 0β)
` 0α→β ≡ λxα.0β

4 Think of Gordon/HOL type definitions, where the representing sets may contain
meta-safely introduced constants, for example.
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which defines 0 on nat , also lifting it to binary products and function spaces. 0τ
is still unspecified on types τ that are not instances of nat or α× β or α→ β.

Note that this extension mechanism requires that all defining equations are
given at the same time (right after the constant declaration). One might want
to relax this in concrete system implementations, allowing the user to augment
theories by additional equations for constants on new type instances in an incre-
mental way. The system will then have to keep track of all the partial definitions,
ensuring that the resulting jumble of equations can be sorted out into proper
overloaded constant definitions at any time.

We now briefly sketch why overloaded constant definitions are indeed meta-
safe. Due to space limitations, we have to gloss over various technical lemmas
about hol deductions (most importantly freeness of unspecified constants and
the deduction theorem).

The key property of our generalized constant definitions is:

Lemma 1. Given any overloaded constant definition Θ2 = Θ1 ∪ c :: σ ∪ `∆c.
Then there is some partial function f from types to terms of Θ1 ∪ c :: σ, such
that f(τ) : τ , and f establishes all type instances of ∆c:

`(Θ1 ∪ c::σ) ∆c↓[f/c]

The proof exploits the well-formedness restrictions on the set of equations ∆c in

straightforward ways: Some canonical f∆c is constructed by well-founded recursion

over types such that the given equations hold. Mainly this works, because no two dif-

ferent cτ1 , cτ2 on the l.h.s. have common instances, and recursive occurrences on the

r.h.s. are well-foundedly simpler. Also TV(τ) = TV(t) plays an important rôle.

Note that f∆c is really partial in general, i.e. [f∆c/c] does not necessarily
eliminate all type instances of c :: σ. If one views ∆c as a convergent term
rewriting system, it leaves exactly those cτ unchanged that are normal wrt. ∆c.

One can easily extend f∆c to some total F∆c that also eliminates leftover cτ
(replacing them by any term of type τ), such that `∆c↓[F∆c/c] in Θ1.

Our main result on the issue of meta-level definitions is:

Theorem 1. Overloaded constant definitions are meta-safe.

The proof exploits f∆c and F∆c as constructed above. Then both syntactic conserva-

tivity and realizability are relatively simple consequences of lemma 1. Unfortunately,

we cannot give more details (which are rather technical) at the level of abstraction of

this paper.

5 Type Classes

5.1 An Order-sorted Type System

The hol language as presented in §3 provides two syntactic layers: higher-order
terms that are annotated by first-order types. We now conceptually add a third
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level of ordered type classes (or sorts) that qualify types. Thus the algebra of
types becomes an order-sorted structure that is amenable to well-known tech-
niques like order-sorted unification [14]. In particular, ml-style type inference
can be easily generalized to the order-sorted system [9,10].

Order-sorted Type Signatures consist of three basic components: a finite
set C of type classes, a class inclusion relation �, and a set of type arities.

The initial class structure (C,�) is canonically extended to a quasi-ordered
sort structure (S,v) such that sorts are finite sets of classes: Any sort s =
{c1, . . . , cn} is supposed to represent the intersection c1 u . . . u cn. Inclusion is
extended from classes to sorts accordingly:

s1 v s2 :⇐⇒ ∀c2 ∈ s2. ∃c1 ∈ s1. c1 � c2

Note that there is always a greatest sort, namely the empty intersection {},
which shall be subsequently written as >.

Type arities are declarations of the form t :: (s1, . . . , sn) s, where t is an
n-place type constructor, and s1, . . . , sn, s are sorts. This is supposed to be a
partial specification of how t acts on certain subsets of the universe of types.

Sort Assignment We assume that type variables αs carry globally fixed sorting
information. One can think of variables as actually consisting of two components:
base name α and sort s.

Now given some order-sorted type signature, sorts are assigned to types via
the following set of rules:

αs : s
τ1 : s1 · · · τn : sn t :: (s1, . . . , sn) s

(τ1, . . . , τn) t : s
τ : s1 s1 v s2

τ : s2

While there may be many type arities for the same constructor, this introduces
neither overloading nor partiality to the level of types. In fact, type arity decla-
rations do not change the well-formedness of types (as defined in §3) at all. They
only influence sort assignment — via the second rule above. Even having no ar-
ities for some constructor is no problem, then one just cannot derive interesting
sort assignments.

In general, there may be many sorts assigned to any given type. The literature
[14] calls a type signature regular iff for all types, the set of assigned sorts has
some least element (modulo sort equivalence). This always holds in our setting,
because sort structures are closed wrt. intersection. Another nice property is
co-regularity which guarantees unitary order-sorted unification of types [14] and
principal type schemes for arbitrary terms [9].

Such technical issues do not matter here. We will be more interested in the
logical content of order-sorted type signatures (see §5.3).
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5.2 Representing Type Classes in hol

Expressing type predicates in hol might seem difficult at first sight: We cannot
have objects c : “type”→ prop, as for good reasons there is no type of all types.

Type predicates are not needed as first class objects, though. A kind of propo-
sitional language of types that is capable to express class membership“τ ∈ c” will
be sufficient. Now hol obviously provides this sort of thing: Any formula ϕ[α]
that (potentially) contains some type variable α may be viewed as a proposition
about types. As an example consider ∀xα yα. xα ≡ yα that describes the class
of all singleton types.

Remains the problem to encode class constants (in a way that admits some
meta-safe mechanism for class definitions). There are probably many ways to
accomplish this, the one presented now seems to be particularly easy to motivate.

The Encoding First, we augment our basis theory by simply adding unspecified
types α itself and constants TYPE :: α itself .

Now for any type class c introduced by the user, we declare a polymor-
phic constant c :: α itself → prop. Applications of the form (cτ itself→prop

TYPE τ itself ), which are of type prop, shall be considered to represent the propo-
sition “τ is member of c”. Subsequently, the telling notation 〈|τ : c|〉 will be used
to abbreviate these terms.

This encoding seems to be an elaboration of a folklore technique from the
LCF community, used to express flatness of domains.

A Motivation So far, we have just introduced abbreviations 〈|τ : c|〉 for some
terms (cτ itself→prop TYPE τ itself ). How can we understand this as a representa-
tion of “τ is a member of c”?

The following motivation is based on a simple set-theoretic semantics of hol,
where types denote sets and type constructors functions that operate on sets.

We choose to interpret [[itself ]] as the function A 7→ {A}, then [[τ itself ]] =
{[[τ ]]} for all types τ . In other words, type constructor itself builds singleton sets
containing the argument itself only. The sole element of any [[τ itself ]] will be
[[TYPE τ itself ]], so we see also that TYPE τ itself has to represent type5 τ .

Next consider [[τ itself → prop]]. This is interpreted as {[[τ ]]} → {0, 1}, assum-
ing that [[→]] is set-theoretic function space, and [[prop]] just the boolean values.
Observe that in general, function spaces {a} → B with singleton domain set
{a} may be viewed as just an isomorphic copy of B marked (or parameterized)
by a. So [[τ itself → prop]] are propositions parameterized by types and objects
cτ itself→prop can already be understood as expressing type membership. Their
formal application to the canonical elements TYPE τ itself is strictly speaking
redundant, but then 〈|τ : c|〉 also has type prop syntactically.

5 There is nothing wrong with some terms (“objects”) representing types (“collections
of objects”) in higher-order logic.
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Note that above interpretation of α itself and TYPE :: α itself could have
been enforced by means of Gordon/HOL-style definitions:

`α itself ≈ {λxα.True} and `TYPEα itself ≡ λxα.True

Unfortunately, the first one is an object-level type definition, which is unavailable
at our more abstract meta-level of hol. This is why we prefer to leave α itself
and TYPEα itself unspecified in the first place.

It is important to note that there are no hol terms representing type classes
per se. For that we would have to leave hol and conceptually abstract over
the first position of 〈|τ : c|〉. Thus contexts of the form 〈| : c|〉 could be viewed as
extra-logical representations of actual type predicates.

5.3 Interpreting the Order-sorted Type System

We are now ready to explain the order-sorted concepts of §5.1 in terms of hol:
The meaning of primitive type signature components will be defined in a quite
obvious manner. Derived notions that depend on these (e. g. sort assignment)
are shown to be consistent with appropriate logical counterparts.

Order-sorted Type Signatures have the following logical content:

Classes c appear as polymorphic constant declarations c :: α itself → prop in
the theory’s signature (cf. §5.2). Recall that class membership is encoded via
some terms written 〈|τ : c|〉.

Class inclusion c1 � c2 is simply expressed point-wise using logical implication
as formula 〈|α : c1|〉 ⇒ 〈|α : c2|〉.

Sorts s = {c1, . . . , cn} are supposed to represent intersections of finitely many
classes. Thus sort membership τ : {c1, . . . , cn} can be expressed using con-
junction as 〈|τ : c1|〉 ∧ · · · ∧ 〈|τ : cn|〉. The latter term shall be abbreviated as
〈|τ : {c1, . . . , cn}|〉. Note that this interpretation is well-defined, independently
of order (or repetition) of c1, . . . , cn.

Sort inclusion s1 v s2 has been defined in terms of class inclusion in §5.1. To
show that this is compatible with 〈|α : s1|〉 ⇒ 〈|α : s2|〉 in the logic one has to
demonstrate that this formula can be derived in hol under the assumption
of the class inclusions taken from the corresponding relation � of the type
signature. The proof of this fact just relies on some basic deductive properties
of ∧.

Type arities t :: (s1, . . . , sn) s are simple schematic statements about the image
of type constructors. We express this point-wise as follows:

〈|α1 : s1|〉 ∧ · · · ∧ 〈|αn : sn|〉 ⇒ 〈|(α1, . . . , αn) t : s|〉

So in ordinary mathematical notation, arity declarations would be something
like f(A1, . . . , An) ⊆ A and not f :A1 × · · · ×An → A.
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Sort Contexts Sorted type variables αs are supposed to express some implicit
restriction to types of certain sorts. Thus formulas ϕ[αs1 , βs2 , . . .] have to be
interpreted actually under additional assumptions 〈|αs1 : s1|〉, 〈|βs2 : s2|〉, . . ..

In general, given any term or type T , let C(T ) denote its set of implicit sort
constraints, which shall be also called sort context of T .

Sort Assignment τ : s has been defined §5.1 relatively to a given type signature
via a certain set of inference rules. We show compatibility with a corresponding
logical notion: If τ : s holds syntactically, then C(τ) ` 〈|τ : s|〉 is derivable in hol

(having the implicit sort constraints appear as explicit assumptions).
In order to prove this, simply mimic the syntactic sort assignment rules of

§5.1 by suitable logical counterparts. For example, the last rule would become:

C(τ) ` 〈|τ : s1|〉 s1 v s1
C(τ) ` 〈|τ : s2|〉

These rules are either logical trivialities or just variants of modus-ponens com-
bined with instantiation, recalling from above the meaning of s1 v s2 and
t :: (s1, . . . , sn) s as certain implications.

Putting all these results together, we see that syntactic operations performed
at the type signature level (e. g. during order-sorted unification or type inference)
can be understood as a correct approximation of logical reasoning.

Seen the other way round, a simple fragment of the propositional logic of
types within hol is reflected at the type signature level, thus automating some
portions of logical reasoning behind the scenes, to the user’s benefit.

6 Class Definitions and Instantiations

We finally give the logical meanings of class and instance that have already
been sketched in §2.2.

First the basic mechanism that introduces type classes in a disciplined way:

Class definition Θ2 = Θ1 ∪ c :: α itself → prop ∪ ` 〈|α : c|〉 ≡ ϕ provided
that c is new and does not occur in ϕ, also FV(ϕ) = {} and TV(ϕ) ⊆ {α}.

Theorem 2. Class definitions are meta-safe.

The proof is very simple: Class definitions are already almost well-formed definitions

of constants c :: α itself → prop. Just the equation ` 〈|α : c|〉 ≡ ϕ looks odd at first sight,

but is actually equivalent to a proper definition ` cα itself→prop ≡ λxα itself .ϕ.

We can now explain the class construct, which has the general form:

class c � c1, . . . , cn
ϕ1 . . . ϕm
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where c1, . . . , cn are the superclasses of c and ϕ1, . . . , ϕm the class axioms (with
TV(ϕj) ⊆ {α} for all j = 1, . . . ,m). This shall be just considered concrete user
interface syntax for the following proper class definition:

c :: α itself → prop
` 〈|α : c|〉 ≡ 〈|α : c1|〉 ∧ · · · ∧ 〈|α : cn|〉 ∧ ϕ′1 ∧ · · · ∧ ϕ′m

where the ϕ′i are the ∀-closures of ϕi (thus ensuring FV(ϕ′i) = {}).
The following theorems are derivable from this definition (simply by taking

the equivalence apart and stripping some ∀’s): The class inclusions c � ci (or
` 〈|α : c|〉 ⇒ 〈|α : ci|〉), the abstract class axioms ϕj [αc] (or ` 〈|α : c|〉 ⇒ ϕj), and
the class instantiation rule `(. . .⇒ 〈|α : c|〉).

Next is the instance construct which comes in two variants:

instance c1 � c2 called abstract instantiation
instance t :: (s1, . . . , sn) s called concrete instantiation

provided that the class inclusion, or type arity is derivable in the corresponding
theories: ` 〈|α : c1|〉 ⇒ 〈|α : c2|〉, or ` 〈|α1 : s1|〉∧· · ·∧〈|αn : sn|〉 ⇒ 〈|(α1, . . . , αn) t : s|〉.

The effect of instantiations is to augment the current order-sorted type sig-
nature by the stated inclusion c1 � c2 or type arity t :: (s1, . . . , sn) s.

Theorem 3. Class instantiations are meta-safe.

For a proof just note that instance is logically almost vacuous: The (axiomatic) addi-

tions to the type signature have already been derivable beforehand.

7 Conclusion

We have seen that simple traditional hol systems (providing object-level type
variables) implicitly contain some propositional language of types that may serve
as an interpretation of type classes, type arities and related notions from Haskell-
like type systems. We could even have supported more general qualified types
[8], notably n-ary type relations, as does the programming language Gofer and
recently proposed extensions of Haskell. Thus the whole order-sorted type system
turns out to be just an addition to user convenience, without really changing
expressiveness of the logic.

We have also introduced three new safe theory extension mechanisms: over-
loaded constant definitions with possible recursion over types, class definitions
and class instantiations. These have been justified at the purely deductive meta-
logical level, without referring to model theory.

One of the most surprising results of this work is simplicity. We did not
have to leave the seemingly old-fashioned hol in favour of full-blown theories of
dependent types. The sort of abstract theories that type classes are capable of
can be offered in hol at no additional cost, apart from implementation efforts.
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