
A Reference Version of HOL

John Harrison1 and Konrad Slind2

1 University of Cambridge Computer Laboratory,
New Museums Site, Pembroke Street, Cambridge, CB2 3QG, England.

2 Institut für Informatik,
Technische Universität München, 80290 München, Germany.

Abstract. The second author has implemented a reference version of
the HOL logic (henceforth called gtt). This version, written in Standard
ML, is as simple as possible, making as few assumptions as necessary to
present the essence of HOL. This simplicity makes the implementation
easy to understand, to port, to develop, to change, and to informally rea-
son about. The first author has ported gtt to another dialect of ML, and
developed the parsing, prettyprinting, and typechecking support needed
to take gtt beyond its initial rudimentary conception. The implementa-
tion of gtt has already been of use in developing a variant of the HOL
logic.

As of this writing, there are at least four or five extant implementations of the
HOL logic. These have been intensively developed, in some cases over decades,
which leads us to an overwhelming question: why another? In particular, why
gtt? There are several answers to this, stemming from different desires and
needs in the HOL community.

Changing the logic a little bit. Some authors [Mel92, Bou92, Sli92, Gun91]
have recently proposed extensions or alterations to the HOL logic. Such
modifications are difficult to implement in HOL88 because such fundamental
changes need to be performed in the “sea of Lisp” that underlies HOL88. Such
alterations are much easier to do in hol90 because it is a far better structured
system that is furthermore written all in one language; still, some aspects of
the core of the hol90 implementation are difficult to modify. The gtt

implementation provides a particularly simple setting to prototype changes
that might eventually migrate into a real implementation of HOL. Later in this
paper we give an overview of one such development.

Changing the logic a lot. Another conceivable use stems from noticing how
small and simple the primitive inference rules are, given the prelogic. Someone
who wanted to implement a logic other than HOL on top of a lambda calculus
with ML-style polymorphic types could use the gtt prelogic as an
‘implementation-springboard’. Although logical frameworks such as Isabelle
would seem to have cornered the market in this area, the gtt style of
implementation offers finer control, and this can be useful in situations where
the object logic embeds awkwardly into the logical framework. For example, a

dependent type theory is difficult to model effectively in Isabelle, since one
would want to directly use the contexts of Isabelle to implement the contexts
of the object logic; however, an Isabelle context is basically a set (of lambda
terms), and that is too simple to capture some aspects of type theory contexts.
Alternatively, one could build a faithful type theory implementation directly on
top of the gtt prelogic. This example suggests that, for the purposes of quickly
implementing a logic, perhaps the issue of whether inference rules are lambda
terms or ML programs is less important than the provision of an expressive
prelogic plus general tools such as extensible parsers and pretty printers,
parameterized rewriting engines, and other specializable reasoning tools. For
discussion of these issues from a somewhat different perspective, see [CH90].

Exploring important implementation issues. One interesting research
field is the investigation of representations of the lambda calculus for theorem
provers (some of the choices are explored in [Hue89]). As one example of the
tradeoffs to be considered, de Bruijn terms simplify substitution and allow
quick tests of alpha-equivalence; however, they also generate more garbage,
since the breaking apart of a lambda abstraction involves a full term traversal
to replace the bound variable with a free variable. Here the benefit of gtt’s
simplicity is that changes to the implementation can be more easily effected
since the scope of such changes is smaller. Also there is the methodological
point that different approaches can be more easily compared in such a simple
setting. The downside of gtt currently is that is not a large body of examples
for evaluating such changes and deciding whether they ought to be propagated
to a real implementation. However, such changes, if they work in the reference
version, are probably simple to propagate to a cleanly written real
implementation.

Portability. Although there are several good implementations of Standard
ML available, the compiler technology for this language has not yet developed
to the point that reliable ports to new architectures can be achieved in a
timely fashion. Spread of the many formal methods tools that have sprung up
around ML is thus impeded. Furthermore, the size of a real HOL system is a
genuine problem in making HOL-based verification tools widely available. Not
everybody can afford a high-powered workstation (or equally importantly, the
memory) to run HOL on. Therefore, a simple but perhaps limited version of
HOL that is easily portable to ‘ML-like’ languages might help increase the
HOL user base.

Teaching. gtt is a concrete, graspable, and executable answer to the question
“what is an implementation of HOL”? Possibly gtt can be of use to those
wishing to teach aspects of higher-order logic and theorem proving. Another
use would be to provide an executable introduction to the essence and
structure of LCF implementations in general (like [Gor82]), and the hol90

implementation in particular. An analogous development for the Calculus of
Constructions can be found in [Hue89].

2

Correctness. Verification tools ought to be correct. gtt is certainly small
enough to reason about informally, and that is of fundamental importance
when developing an implementation. However, we would like to go further and
assert that gtt is simple enough to reason about formally. The recent work of
von Wright [vW94] is encouraging in this regard, although we caution that
verification of gtt must deal with code that uses exceptions and reference
variables: the former are frequently used in the implementation and the latter
are required in order to implement the symbol tables (signatures in standard
logical parlance) for types and terms.

The rest of this paper divides up as follows: we first describe LCF-style theorem
provers and list various shortcomings common in HOL implementations; then
the basic implementation of gtt is explored, plus additions to make it usable.
After that, we discuss a port of gtt to a different dialect of ML. Then we
mention some aspects of how gtt was used in the development of an extension
of the HOL logic. The rest of the paper is a discussion of a grab-bag of ideas
and issues that arose in the course of this work.

1 The ideal and the real

An idealized LCF-style implementation provides three basic modules upon
which the entire rest of the system is developed by secure definitional extension
and ML programming:

1. A logical engine, dealing solely with terms, types and theorems, including
the primitive inference rules and principles of definition. This kernel should
be totally independent of the other two modules.

2. Support for organizing logical developments, maintaining their
interdependencies, and storing/retrieving them in a safe manner in the file
system. Such theories are stored either using a custom file format or
perhaps by exploiting facilities for persistent storage in the ML
implementation.

3. A front end, including term and type parsers and prettyprinters as well as
(perhaps) a typechecker for terms.

Current HOL implementations, including hol90, but perhaps excepting
ProofPower, which we are not adequately familiar with, deviate somewhat from
the ideal. Following are some examples of how these notionally orthogonal
modules are conflated in current HOL implementations.

– The function new specification performs definitional extension of the
logic with new term constants. But apart from the existential theorem
justifying the definition and the name of the constant, it expects a name
under which to store the definition on disk, as well as indications of the
parse status of the new constant(s).

3

– The ML type of HOL types typically includes more than just type
constructors and variables. For example, in hol90 this type has separate
fields for ‘user’ and ‘system’ type variables and utilizes reference cells for
efficient implementation of unification by pointer redirection. These extras
are only used for typechecking, so interface support is mingling with the
logical operations inappropriately.

– A further weakness is that a term constructed by parsing is dependent on
the correctness of the typechecker for its well-typedness. Thus a bug in the
typechecker (which is notionally separate from the logic) could cause the
construction of badly-typed ‘terms’. This can be seen as compromising the
integrity of a HOL implementation. However, the HOL implementations we
are familiar with are not dependent on the parser and typechecker for
terms, so the paranoid user can always use the term constructors directly
or write their own parser and typechecker.

2 The kernel of gtt

Since the authors were interested in isolating the essence of HOL, the core
implementation of gtt intentionally lacks almost all the features that HOL
users are accustomed to. However, we have been careful to ensure that all such
features can be built on top of the core. To make a long story short, in the
kernel there is no notion of parsing or prettyprinting of the objects defined in
the kernel; there is no quotation or antiquotation; there is no type inference;
there is no notion of theory (internal or on disk); no term or type constants
have been hardwired in; no definitions or axioms have been predeclared; and
there are no derived rules, conversions, or tactics.

What then does it have? The core of gtt comprises a collection of support
functions, the implementations of types and terms, a few derived syntactical
operations, the encapsulation of the basic rules of inference in the abstract
type of theorems, and the three basic principles of definition. The gtt kernel is
coded in a style that favours clarity over efficiency. We have, however, not
omitted any of the error checking of real versions of HOL, since that is an
essential part of the behavioural specification of the system. Therefore gtt is
not a toy implementation: it may be naively coded in some parts, but its kernel
is completely adequate with respect to its expected behaviour, as one would
demand of a system that claims to be a reference.

The implementation of the gtt kernel comprises approximately 750 lines of
functorized SML. We now go through the modules that make up the system.

2.1 Utilities

This is a small library of utility functions, including the definition of a uniform
error facility. Some of these functions, e.g. itlist, already exist in various ML

4

dialects, though usually under different names (e.g. fold or it list).
Collecting them all together aids portability and helps to make dependencies
explicit. Approximately 30 functions are defined here, and their source takes up
about a quarter of the total size of the system (measured in lines of code).

2.2 Types

This module builds the abstract type of hol types, together with the
constructors and destructors and a function to substitute types for type
variables in another type. The module includes a reference variable which holds
the current type constructors and their arities (the type signature). As we
mentioned, in the core there is no notion of concrete syntax; therefore, type
variables and constructors can be any ML string. This simplifies the logic of
the implementation a great deal, but not too much: the construction of a
compound type still involves a check that the arity of the type constructor is
respected. About a tenth of the system size comes from the definition of types.

2.3 Terms

This module builds the abstract type of terms, together with constructors,
destructors, substitution functions, etc. This includes a reference variable
which holds the current term constants and their types (the term signature).
Some notable details about the implementation of term follow.

1. As in hol90, (a slight modification of) de Bruijn terms [dB72] are used,
since they give simple implementations of the operations of substitution
and type instantiation. (On the other hand, the constructors and
destructors for abstractions become a little more complex.) Unlike
substitution in current implementations of hol90, no renaming is done: with
de Bruijn terms this is not necessary from a logical point of view and it is
possible to implement renaming versions of subst and inst outside the
kernel. The benefit of this is that a user-interface issue (renaming for
readability and re-parsability) is separated from the logical operation of
substitution.

2. The mk const function has been simplified. It now takes a type
substitution to apply to a constant’s generic type, rather than using
matching to find the desired substitution. This small change frees the
kernel from the relatively sizable code implementing matching. The
function is much more efficient and often easier to use. For example, when
constructing a universally quantified term, it is just necessary to substitute
the type ty of the bound variable for the universal quantifier’s type variable
α, rather than build up the entire type of the quantifier, namely
(ty → bool) → ty. Matching, and thus a conventional mk const, can be
provided external to the core.

5

3. As for types, there is no restriction on the lexical form of variable and
constant names.

4. We do not need to include the ‘renaming’ functions mk primed var,
genvar, and variant in the gtt kernel. (One of the reasons for this is that
substitution does no renaming.) This is fortunate, because these functions
make some assumptions about the concrete syntax, e.g., that a prime mark
(’) is an allowable part of a variable name. More important is the fact that
the properties achieved by renaming are notoriously complex to specify and
reason about. For example, the logical definition of variant is an
interesting exercise in wellfounded recursion. In a formalized version of the
system, all functions would be definable using abbreviation or primitive
recursion (and without any of the contortion needed, for example, in
defining Ackermann’s function primitive recursively). This gives strong
evidence for the simplicity of gtt. Caveat: we are ignoring how to model
exceptions and references in this assertion.

The term module takes up about a quarter of the gtt implementation.

2.4 Derived syntax operations

This small module contains derived term operations for the primitive logical
constants for implication (==>) and equality (=). This is the minimum required
to implement the remainder of the kernel.

2.5 Theorems

This module provides the abstract type of theorems and the primitive inference
rules: REFL, ABS, SUBST, ASSUME, DISCH, MP, SUBST and INST TYPE. Many HOL
implementations provide some additional primitive rules for the sake of
efficiency, but we limit ourselves to the standard set of rules. Given the
functions available in the preceding modules, the inference rules find very easy
and compact expression. The majority of the code is in fact taken up with
checking side conditions and issuing the right error messages. The module of
theorems takes about an eighth of the implementation.

2.6 Principles of definition

This module implements the three basic principles of definition for the HOL
logic: constant definition (defining a constant equal to an existing term),
constant specification (defining a constant as a witness for an existential
theorem) and type definition (defining a new type in bijection with a nonempty
subset of an existing type). We also supply the new axiom function, since at

6

this point, we have not yet introduced the axioms of the HOL logic (they
depend on definitions that have not yet been made). We have simplified the
principle of type definition so that it no longer has a redundant argument (the
pattern argument essentially duplicates information already present in the
justifying theorem). Dropping the checking of parsing information from these
functions makes them markedly simpler. The code for the principles of
definition takes about a fifth of the implementation.

2.7 What about theories?

The elimination of any notion of theory hierarchy achieves, at a stroke, an
enormous simplification in the implementation. Since gtt has no concept of the
external storage of theorems (i.e., theory files), users must rely on the facilities
of ML (top level bindings and perhaps structures). If the system were to be
used for real work, more support might be required, although systems like
Isabelle and ProofPower seem to do just fine without a custom notion of theory
file. Such support can in any case be implemented outside the logical core,
although in the absence of the ability to safely export and import ML binaries
to disk, the core of gtt might have to be extended so that theorems stored
externally in ASCII can be safely brought back into the image.

Conclusion

We have now finished reviewing the implementation of the gtt kernel. The
current status of the original SML implementation of gtt is that on top of the
core, we have performed the definitions of the basic logical operators and
asserted the axioms of HOL. A derived implementation in another dialect of
ML has been taken a bit further, and will be discussed in the next section. Our
belief is that gtt is small enough to ‘fit in the palm of one’s hand’: prospective
changes to HOL can be implemented and experimented with in an environment
providing none of the distractions of a large system. We will discuss such a
development in a subsequent section.

3 A front end

Now we turn to the provision of support for higher levels of interaction with
gtt; without this, the system is unusable. In gtt we have fully disengaged the
front end from the underlying logical core. Most of this was achieved by paring
down the existing hol90 system, although the parser was written from scratch.
Some code in hol90 was also improved in the light of our reexamination. The
front end support for gtt although somewhat meager, has been sufficient to
exercise the implementation on some preliminary examples. The front end
separates into type checking, parsing, and prettyprinting.

7

3.1 Typechecking

First we define ‘preterms’ and ‘pretypes’ which are used as an intermediate
representation for the parser and typechecker. The notion of pretype achieves
complete separation from the logical engine of typechecking operations. The
typechecker implements the Hindley-Milner algorithm with side-effecting
unification and is a slightly more elegant version of the one in hol90. Various
functions are provided to translate into true types and terms.

3.2 Parsing

It is at this stage that we make choices about the concrete syntax of HOL. We
developed a simple lexical analyzer based on the SML model (i.e., separate
classes of ‘alphanumeric’ and ‘symbolic’ identifiers). The lexer output is fed to
a recursive descent parser constructed using higher-order combinators. A
handwritten parser is far more portable than an automatically generated one,
and is certainly much more readable (although it is less readable than the
ML-Yacc grammar of the hol90 parser). The concrete syntax of types and
terms has been slightly rearranged to be simpler than in hol90, and three useful
(and compatible) changes have been made.

1. Any term (subject to some mild restrictions) is allowed as the varstruct in
a binder, which both regularizes the syntax and allows more general
notions of matching (the special status of pairing rightly disappears).

2. Any alphanumeric identifier is permitted as a type variable, which allows
much more readable names. Resolution of type constants and type
variables is subsequently made on the basis of the symbol table, exactly as
for term constants and term variables.

3. A new parsing class of prefix is introduced, for unary operators which are
right associative, as opposed to the usual left. In current HOL
implementations negation is treated this way on an ad hoc basis. A more
general facility might be useful e.g., for modal operators3.

As yet, quotation and antiquotation are not supported in the lexer and parser:
we regard this as primarily an ML issue; it is simple to adjust the front end if
the ML provides quote/antiquote, relatively involved otherwise.

3.3 Printing

We initially used a simple prettyprinter which hardly deserved that
appellation. It was nonetheless enough to make the system tolerable to use. In

3 This was suggested by Ching-Tsun Chou

8

general, we find that a little prettyprinting goes a long way! More recently, the
front end has been augmented with a prettyprinter which behaves very
similarly to the ones in mainstream versions of HOL. This augmentation was
developed by Richard Boulton using a port of the prettyprinting engine from
his HOL88 library, in conjunction with a prettyprinter generator.

4 Portability

The gtt system has already been developed in parallel SML and CAML Light
versions, with some work being done first in SML, some in CAML. CAML
Light [Mau93] is a compact, well-engineered implementation of ML which, in
stark contrast to any implementations of SML or ‘Classic’ ML, runs well on
small machines. Apart from the interest of porting HOL to other languages, a
CAML port opens up a number of new possibilities.

– CAML Light currently runs on a wider range of machines than SML. This
makes it much easier to test on different architectures. For example, we
have already run the system on a DEC Alpha. This observation is
reminiscent of one of the advantages of RISC over CISC: by building a
simpler system we can quickly take advantage of new technological
developments.

– CAML is an influential language in France, and the availability of a CAML
port might help to generate more interest in HOL in that country.
Furthermore CAML is almost upward-compatible with the Classic ML as
used in HOL88, and ISWIM traditionalists may find it more congenial than
the somewhat ‘heavier’ syntax of SML.

– As mentioned above, CAML Light can be used on quite small machines,
for example an 8086 PC with at least 640K of memory. By contrast,
SML/NJ requires at least 16M of memory to run in a way that can be
called satisfactory, and if using a PC you would need at least a 386-based
system. This means that many researchers will be able to run gtt not just
on the state-of-the-art workstation on their desk, but on the old toy
computers they have at home. And furthermore, in many countries (e.g.,
Russia) state-of-the-art workstations are almost unheard of but PC
systems are common.

One of the great merits of gtt is that it provides a simple platform for
experimentation with new logical ideas or implementation methods. On the
debit side, its very smallness militates against meaningful benchmarking since
there just isn’t a substantial suite of proof scripts to try. Nevertheless we
believe it should be straightforward, if tedious, to port firstly the derived
system and then proofs, from HOL88 or hol90. The following tasks remain
before it is possible to port over derived rules and theories:

9

– implement matching,
– supply a standard mk const,
– add all the derived syntax operations,
– supply standard versions of definition principles, i.e, taking parsing status

of introduced constants into account, and
– implement simple in-memory theories, as an organizational aid.

Many of these have already been done in the CAML Light version at the time
of writing. New alternatives have also been attacked, such as higher-order
rewriting. We discuss this later in the paper.

5 New logical ideas

In this section, we discuss a list of possible changes to the underlying logic
which have been suggested in the past but ran out of steam because of
implementation complexity. With gtt, making most of the changes described
below would be simple (though the theoretical ramifications might be
complex). The first possibility has recently been implemented, in fact by using
gtt. The others have not, as yet, made their way into public distribution.

5.1 Type quantification

In very recent work, Tom Melham and the second author have used gtt as a
springboard to a full HOL system that implements the type quantification
proposal put forth in [Mel92]. Briefly, this proposal involves supporting an
ability to universally quantify, in the term language, over type variables.
Implementation of this would require extensive modification to the kernel of,
say, hol90, so instead it was decided to modify the implementation of gtt.

In all, there were three implementations completed, in less than one month of
time:

1. A deBruijn version, where quantified type variables were represented with
numbers. No renaming is performed in substitution. This allowed the
fundamental aspects of the representations of types and terms to be quickly
implemented. The development of this did not progress beyond the kernel.

2. A deBruijn-with-renaming version. This was as the previous
implementation, except that renaming would occur if a substitution would
result in the textual capture of an incoming variable. This was the most
complicated part of the effort, since there are two levels of capture that can
occur. This version did not progress past the implementation of the kernel
and extensive testing of the prelogic, especially for renaming behaviour.

10

3. A full-blown HOL version, based on the previous version, but with support
for type-quantified terms extended to parsing and prettyprinting, plus all
the derived inference facilities of HOL such as rewriting and
forward-chaining.

Perhaps this implementation could have been directly achieved in the same
amount of time by modifying an existing HOL implementation, but being able
to focus on the appropriate issues at the appropriate times in development,
without clutter, was found to be useful.

5.2 Other possibilities

The following proposals are loosely ordered in terms of how thoroughly they
have been thought through. In fact, the first few items have already been
implemented in some form or other; we include them merely for completeness.

1. Lazy theorems could be added, as proposed by Richard Boulton [Bou92].

2. Notions of abstract theory [Win92] could be directly supported, as in
[Gun91]. For example, a theorem could have two separate assumption lists,
one of them considered as an abstract context. The intended interpretation
would be exactly the same (as if the two assumption lists were unioned
together). This could give considerable organizational benefits without
elaborating the system’s simple semantics.

3. Theorems could be tagged with ‘unsafe’ flags, indicating for example that a
primitive version of a supposedly derived rule is used, or that some
external tool has been used to derive the ‘theorem’. This is an elaboration
of a scheme proposed by Mike Gordon and described in [Gor93]. More
sophisticated tagging schemes might allow precise tracking of theorem
interdependencies.

4. Alternative representations for numerals could be experimented with. This
idea has been a preoccupation of the first author for some time. At present,
numerals are implemented as logical constants, and all arithmetic based on
a primitive rule num CONV which evaluates the successor function. This has
the dual defects of being hopelessly slow for large numbers and relying on
the accuracy of the native ML integer arithmetic (of which more below).
An interesting alternative is to use some binary representation inside the
logic, and present numerals to the user only by prettyprinting.

5. It is very useful in certain applications, e.g., program semantics, to use
more sophisticated varstructs in lambda-abstractions than just single
variables. A HOL library written by Jim Grundy exists to duplicate all the
usual proof facilities, but for paired abstractions. It would be interesting to
incorporate this into the core, as has been done in ProofPower. Even more
general forms of varstruct are allowed by the new parser (see above) and it

11

would be interesting to explore the extent to which these can be supported
automatically. We have in mind a logical interpretation of:

λ(E[x1, . . . , xn]).F [x1, . . . , xn]

into the following primitive logical form:

εf. ∀x1, . . . , xn. f(E[x1, . . . , xn]) = F [x1, . . . , xn]

A simple modification to this, to allow several possible varstructs would
allow CASE statements and readable pattern matching inside the logic. An
appropriate semantics for sequential matching is quite simple.

6. The primitive rule SUBST could be supplanted by a number of simpler
rules, e.g., MK COMB, SYM, TRANS and EQ MP. This seems like a lot of new
primitive rules, but each of these are very simple, and we believe that the
resulting system would be more amenable to formal analysis.

7. The principles of definition could be changed. Currently the principles of
constant definition and specification are very nearly interderivable.
Specifically, any application of new definition can be replaced by a
derived use of new specification (since the theorem |- ?x. x = t is
always provable if t is closed) except the definition of the existential
quantifier itself! And using ε-terms, constant specifications can be defined
as HOL terms, but unlike the constants returned by new specification, it
is possible to prove equalities between terms based on the same predicate.
It seems crude to have two principles of definition, and that any of them
should rely on derived constants (the existential quantifier and the
constant TYPE DEFINITION). In principle there is a transitory phase before
the existential quantifier has been defined when HOL is unsound, as one
could define that quantifier differently and then abuse new specification.
One solution would be to allow the introduction of a new constant c and
theorem |- P c given only |- P t for a closed term t. This has the merit
of subsuming the two principles of term constant definition, and helping to
separate the assumption of the Axiom of Choice from the principles of
definition.

6 New implementation ideas

There are various investigations which could be undertaken regarding the
implementation. We do not claim any originality in these ideas: we imagine
that many others have had thoughts along these lines.

1. The assumptions could be implemented as a more efficient data structure
than a list. This might have a big impact on the efficiency of certain derived
decision procedures, as described elsewhere [Har94]. It is likely that such a
modification would imply a change in assumption ordering, and cause some
existing proofs (especially those relying on FIRST ASSUM) to break.

12

2. The use of annotations, as proposed by Sara Kalvala [KAL92], could be
supported. These allow the maintenance of logically irrelevant but
practically useful information in the theorem or proof structure. Possible
applications include documenting proofs and controlling prettyprinting of
embedded languages.

3. Structure sharing techniques could be tried. At one extreme, global
hash-consing is possible, though to keep structures garbage collectable it
should be done inside the ML compiler. Reasonable variants might include
sharing only types (garbage collection is less of a problem here because
types are not often created then completely discarded), only variables, or
only terms in theorems produced via PROVE.

In the case of types, the HOL88 system stores types at all nodes in a term.
By contrast hol90 stores them only at leaves (i.e. constants and variables).
This means that hol90 is more space-efficient but that finding the type of a
term is more expensive. For example, building up a term tree via the
abstract constructors mk comb and friends (which check types
independently on each call) can quadratic time usage in the size of the tree,
because at each constructor application it is necessary to traverse (some of)
the subtrees to find their types. It would be interesting to see if sharing
types would tip the balance back in favour of the HOL88 method.

4. There are interesting possibilities for partial evaluation, or so the people
who do partial evaluation tell us [Lau90]. The simplicity of gtt is such that
it should port easily to a language with partial evaluation; however, we
caution that the benefits of partial evaluation will need to be measured in a
full-scale HOL implementation.

5. A small system might be a better target for proof recording as has already
been done in HOL88 by Wai Wong [Won93]. This could be used in
conjunction with proofcheckers that have been written with respect to
formalized notions of HOL proof, such as those developed by Rob Arthan
[Art90] and Joakim von Wright [vW94].

6. The ‘integers’ in both SML and CAML Light are highly unsatisfactory. In
CAML Light they are underlying machine integers minus one bit
(presumably needed for garbage collection). They will wrap silently in both
directions without generating an exception. The SML Standard has almost
nothing useful to say about the behaviour of integers, rendering it
extremely awkward for serious correctness proofs. Poly/ML sensibly
provides bignums, whereas SML/NJ relies on machine arithmetic (though
it does detect overflow).

Owing to the use of de Bruijn terms, integers are used in an essential way
in the gtt core; however although this may be an impediment to completely
formal verification, it is hardly conceivable that overflow could occur. More
worrying is the use of integers to provide unique variable names via
genvar. It is not completely inconceivable that on in a large proof, these
could wrap, causing derived rules to fail in puzzling ways. This raises the
issue of how best to generate unique names, and whether it might be

13

satisfactory (though presumably less efficient) to use variants of free
variables in terms under consideration in a given derived rule.

Another issue is the use of ML integers to perform arithmetic in the logic.
Without bignums this cannot be done for large numbers, though the
change to numeral representation described in the previous section might
make this concern irrelevant.

7. One slight irritant when writing functions which recursively traverse terms
is that the term constructors like mk comb are not the primitive
constructors, but rather abstract functions. This means that it is not
possible to pattern match against them, which creates difficulties. Rather
than using the usual elegant style of SML function definitions, the
programmer is forced to use explicit destructors. Elsa Gunter has invented
a way of achieving such matching, though it might rely on the fact that
destructors do no real computation and hence might only work with a
non-de Bruijn implementation of terms. Again, the size of gtt makes this
kind of investigation easy.

8. Overloading. In many situations (e.g., algebra or number theories) the
overloading of constant names can be tremendously useful. gtt is a good
place to prototype various proposals for this feature.

9. Higher order matching. The limitations of the matching strategy used by
current HOL implementations in rewriting, modus ponens , forward
chaining, etc., can be restrictive. Sometimes one has to resort to manually
instantiating and then beta-reducing a theorem. Even a limited form of
second order matching would be much more flexible. In particular, the
quantifier movement conversions (and even beta-conversion) could be done
by rewriting. This has already been explored in the CAML Light version of
gtt and results are promising. The more general matching has even been
integrated with the term nets used in rewriting, so there is little or no
slowdown when looking for higher order matches.

Conclusion

We have developed a simple reference implementation of the HOL logic. The
code is easy to port, simple to grasp, and we have developed a small but useful
front end. It has already proved to be useful in developing an alternative HOL
implementation. We hope that it is of use to others who wish to experiment
with HOL. In closing, we would like to point out the obvious: any development
of gtt into a large and complex system, i.e., a full implementation of HOL, will
not remove the need for a simple, executable reference for that large and
complex system.

14

References

[Art90] R.D. Arthan. A formal specification of HOL. Technical Report
DS/FMU/IED/SPC001, ICL Defence Systems, April 1990.

[Bou92] Richard Boulton. Lazy techniques for fully expansive theorem proving. In L.
Claesen and M. Gordon [LM92].

[CH90] R. Constable and D. Howe. Nuprl as a general logic. In P. Oddifreddi,
editor, Logic and Computer Science, pages 77–88. Academic Press, 1990.

[dB72] N.G. de Bruijn. Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-Rosser
theorem. Indag. Math., (34):381–392, 1972.

[Gor82] Michael Gordon. Representing a logic in the LCF metalanguage. In
D. N’eel, editor, Tools and Notions for Program Construction, pages
163–185. Cambridge University Press, 1982.

[Gor93] Michael Gordon. Note to info-hol mailing list, archive number 0914.
Tagging theorems for proof acceleration, January 1993.

[Gun91] Elsa Gunter. Abstract Theories for HOL. In Informal Proceedings of the
1991 Hol User’s Group Workshop. Unpublished, Aarhus, Denmark, 1991.

[Har94] John Harrison. Binary decision diagrams as a hol derived rule. In HUG94
(LNCS 859), Malta, 1994.

[Hue89] Gerard Huet. The constructive engine. In Calculus of Constructions:
Documentation and User’s Guide - Version 4.10 (INRIA Techreport 110),
1989.

[KAL92] Saraswati Kalvala, Myla Archer, and Karl Levitt. Implementation and use
of annotations in HOL. In L. Claesen and M. Gordon [LM92].

[Lau90] John Launchbury. Projection Factorisation in Partial Evaluation. PhD
thesis, Glasgow University, 1990.

[LM92] L. Claesen and M. Gordon, editors. International Workshop on Higher
Order Logic Theorem Proving and its Applications, Leuven, Belgium,
September 1992. IFIP TC10/WG10.2, Elsevier Science Publishers.

[Mau93] Michel Mauny. Functional programming in CAML-Light. Technical report,
INRIA, France, 1993.

[Mel92] Tom Melham. The HOL logic extended with quantification over type
variables. In L. Claesen and M. Gordon [LM92].

[Sli92] Konrad Slind. Adding new rules to an LCF-style logic implementation:
Preliminary report. In L. Claesen and M. Gordon [LM92].

[vW94] Joakim von Wright. Representing higher order logic proofs in HOL.
Technical report, University of Cambridge, 1994. forthcoming.

[Win92] Phil Windley. Abstract theories in HOL. In L. Claesen and M. Gordon
[LM92].

[Won93] Wai Wong. Recording HOL proofs. Technical Report 306, University of
Cambridge Computer Laboratory, 1993.

This article was processed using the LATEX macro package with LLNCS style

15

