
HOL Done Right

John Harrison

University of Cambridge Computer Laboratory

New Museums Site

Pembroke Street

Cambridge

CB2 3QG

England

jrh@cl.cam.ac.uk

21st August 1995

Abstract

In our opinion, history and compatibility considerations have rendered

existing HOL implementations rather messy and badly organized. We de-

scribe how, building on joint work with Konrad Slind, we have produced a

re-engineered HOL. Various experiments have been tried on this ‘toy’ version,

and we will report the results.

1 Introduction

We assume that the reader is already familiar with HOL (Gordon and Melham
1993). The system has been evolving for about ten years now, and the user com-
munity has grown steadily. This means that it’s not easy to make incompatible
changes without upsetting people. The changeover from HOL88 to hol90 is already
sufficiently traumatic that some pains were taken to make the systems as closely
compatible as possible. However in the process some opportunities have been lost.
Harrison and Slind (1994) have developed a cut-down and rationalized version of
HOL, and both authors have continued to use it as a platform for experimentation
with new ideas. Slind has added type quantifiers as suggested by Melham (1992),
while the present author has kept the existing logic, but modified some of the system
features.

Some of our experiments have ended in failure, but we are pleased with the re-
sults of some others. In this papers we give a quick overview of the most substantial
changes which we consider (at present) to be successful. These ideas, and even their
first implementation, are not all due to the present author, and some were already
reported in our paper with Slind.

2 Implementation Language

The system has been implemented in CAML Light. This was partly motivated by
our visceral dislike of SML syntax, and partly by our hope of making a system small
enough to run even on small machines (at the time we began, the only SML compiler
we had access to was Standard ML of New Jersey, which is notoriously memory-
hungry). The system described here has been run, albeit slowly, on an Apple
Macintosh portable (thanks to Malcolm Newey). The CAML system is remarkably

1

economical, at least as regards code size. Heap size is still a problem, and we
believe hash-consing should be investigated, but the situation is much better than
for SML/NJ (which copies the whole heap).

The CAML Light system provides an excellent programming environment. The
language is mostly simple, without the complexities of equality types or the SML
module system. Excellent libraries are provided for interfacing with the system and
even custom C code. A debugger and profiler are available. Automatic invocation
of user printers at the top level is supported, and the library of box primitives
makes it easy to write reasonable printers without too much trouble. The language
lacks a special treatment of quotation (SML/NJ includes some well-thought-out
facilities due to Slind), but it was easy enough to fit a crude filter on the front of
the read-eval-print loop, and invoke it automatically when reading files. CAML is
rather slow compared to SML/NJ, since it’s a bytecode interpreter rather than a
compiler, but it was fast enough for our purposes; in fact the system is much faster
than HOL88, even though it does more work in primitive rules (see below). The fact
that CAML builds on DEC Alphas (and seems to run about 3 times as fast as on
Sparcs) is some compensation.

3 General organization

In existing HOL implementations, there is an ugly and dangerous melding together
of the interface with the logical core. For example, in hol90, the abstract type of
HOL types is encumbered with extra fields which are only used in type checking.
Apart from being bad software engineering (typechecking is purely a user interface
issue) this could actually be dangerous, since a bug in the typechecker might lead
to ill-typed terms being constructed. Another example: all the functions which
handle definitions take extra arguments to indicate parse status. Again, parsing
status should be quite separate from logical concerns, and has little to do with
whether something is a constant or a variable.

In our system, there is a rigorous separation of the logical core from interface
modules. The interface consists of the parser, printer, typechecker and subgoal pack-
age. The typechecker uses a quite separate type of ‘pretypes’ as well as ‘preterms’
and all translations to real types and terms are mediated by the simple abstract
type constructors which check correctness at each application. This is not a seri-
ous efficiency bottleneck, since one can normally find the type of a term by diving
down the rator of each combination; generally after just a couple of steps one hits
a constant or variable whose type is saved. (HOL88 stores types at all subnodes of
a term, but for the reason we have just outlined, we believe this to be a waste of
time.)

4 Programming

A few parts of the implementation have been rationalized. In particular we provide
generic iterators for destructors, by analogy with itlist and friends for construc-
tors.

let rec splitlist dest x =

try let l,r = dest x in

let ls,res = splitlist dest r in

(l::ls,res)

with _ -> ([],x);;

let rev_splitlist dest =

let rec rsplist ls x =

try let l,r = dest x in

2

rsplist (r::ls) l

with _ -> (x,ls) in

fun x -> rsplist [] x;;

let striplist dest =

let rec strip x acc =

try let l,r = dest x in

strip l (strip r acc)

with _ -> x::acc in

fun x -> strip x [];;

This gives a unified treatment of term destructors:

let conjuncts = striplist dest_conj;;

let disjuncts = striplist dest_disj;;

let strip_comb = rev_splitlist dest_comb;;

let strip_abs = splitlist dest_abs;;

let strip_forall = splitlist dest_forall;;

let strip_exists = splitlist dest_exists;;

let strip_select = splitlist dest_select;;

and in some cases, even theorem destructors:

let CONJUNCTS = striplist CONJ_PAIR;;

Note that this is much more efficient (w.r.t. consing) than the old HOL imple-
mentation of CONJUNCTS which used appends.

5 Parser

The parser allows the user to specify operator precedence and associativity (as in
hol90, but not, alas, HOL88 — assumptions that multiplication binds more strongly
than addition account for a lot of beginners’ errors in the author’s experience). It
also provides a class of prefixes, which associative to the left. In previous imple-
mentations, negation was hacked specially, but now it is just an instance of a prefix
operator.

The parser is largely independent of the variable/constant status of terms; the
recognition of constants only happens at the end, as part of typechecking. So
variables can be given special parse status in just the same way as constants, useful
for general theories of order relations, groups etc.

As an illustration of how the definition of infix constants is simplified, compare
the definition of addition in our system:

parse_as_infix("+",(15,"right"));;

let ADD = new_recursive_definition num_Axiom

‘(!n. 0 + n = n) /\

(!m n. (SUC m) + n = SUC(m + n))‘;;

with the corresponding HOL88 definition:

let ADD = new_recursive_definition true num_Axiom ‘ADD‘

"($+ 0 n = n) /\

($+ (SUC m) n = SUC($+ m n))";;

and the hol90 definition:

val ADD = new_recursive_definition

{name = "ADD",

fixity = Infix 500,

rec_axiom = num_Axiom,

def = --‘($+ 0 n = n) /\

($+ (SUC m) n = SUC($+ m n))‘--};

3

Clearly it’s much better. (Though part of the greater tidiness is because of the
absence of theory files.)

6 Prelogic

Following Slind, we make mk_const take a type instantiation for the generic type
rather than a type to produce. This simplifies the critical core by taking out match-
ing (admittedly type matching isn’t very complicated, but every little helps). Sur-
prisingly, we have seldom found it inconvenient to use this version; although we
provided a duplicate of the usual HOL mk_const, we found ourselves using the
primitive one in almost all situations.

HOL’s rewriting was optimized by Boulton (1993), based on ideas of Roger
Fleming, to avoid rebuilding unchanged subterms by propagating an ‘unchanged’
exception. We extend this to the basic term operations of substitution (subst) and
type instantiation (inst). We do not have any firm performance statistics, but
intuitively we believe that this policy saves us a lot of consing, and hence garbage
collection time. Of course, it also slightly increases the complexity of the critical
code.

We have alternative implementations of both name-carrying and de Bruijn terms.
The advantages of de Bruijn terms for giving clean, reliable definitions of opera-
tions like substitution are well-known. However they also have their drawbacks,
particularly for a system like HOL where the abstract constructors for HOL terms
present a ‘name carrying’ interface, and where it is common practice for users to
break apart terms inside derived rules. Every time we break apart an abstraction,
we need to descend throughout the subterm, replacing bound variables by free vari-
ables, a consing load which could be appalling in large abstraction-rich terms. This
made us settle on name-carrying syntax as the main choice. We have grasped the
nettle and implemented the troublesome operations subst and inst. We would
like to perform some kind of informal verification to see that they are correct, but
for the moment we just hope! Incidentally, we have used a special function vsubst

which only substitutes for variables in the core. Besides being simpler, it avoids
some repeated checks; in existing implementations we check whether the term in
question is equal to the term to be substituted for before we even check whether it’s
a variable. All the core operations (and most non-core operations, COND_CASES_TAC
being one of the few exceptions) can use this form.

The implementation of substitution for name-carrying syntax in a way which is
both sound and efficient is itself an interesting research problem. There are plenty
of choices over whether to trap name-capture errors at enclosing binders, or carry an
environment of binders down and check for clashes at the time of substitution. All
sorts of refinements are possible. Our implementation was motivated by the desire
to make the common cases where variable capture doesn’t occur (in fact variable
clashes in inst never happen in the whole HOL core!) as fast as possible, while
keeping the whole thing sound. We have a separate substitution function which
is used recursively until we come to a lambda – this accounts for about half of
substitutions and is much faster. With some trepidation, we make our code public:

let vsubst =

let rec vsubst theta tm =

match tm with

Var(v) -> (try snd(rev_assoc tm theta) with _ -> raise Unchanged)

| Const(_) -> raise Unchanged

| Comb(l,r) -> qcomb (fun (x,y) -> Comb(x,y)) (vsubst theta) (l,r)

| Abs(_) -> fst(vasubst theta tm)

and vasubst theta tm =

match tm with

4

Var(v) -> (try snd(rev_assoc tm theta),[tm] with _ -> raise Unchanged)

| Const(_) -> raise Unchanged

| Comb(l,r) -> (try let l’,vs = vasubst theta l in

try let r’,vt = vasubst theta r in

Comb(l’,r’),union vs vt

with Unchanged -> Comb(l’,r),vs

with Unchanged ->

let r’,vt = vasubst theta r in Comb(l,r’),vt)

| Abs(v,bod) -> let theta’ = filter (prefix not o prefix=v o snd) theta in

if theta’ = [] then raise Unchanged else

let bod’,vs = vasubst theta’ bod in

let tms = map

(eval o fst o C rev_assoc theta’) vs in

if exists (mem v) tms then

let fvs = itlist union tms (subtract (frees bod) vs) in

let v’ = variant fvs v in

let bod’,vars’ = vasubst

(((eager [v’],v’),v)::theta’) bod in

Abs(v’,bod’),subtract vars’ [v]

else

Abs(v,bod’),vs in

fun theta ->

if theta = [] then (fun tm -> tm) else

let atheta = map

(fun (t,x) -> if is_var x & type_of t = type_of x

then (lazy frees t,t),x

else failwith "vsubst: Bad substitution list") theta in

qtry(vsubst atheta);;

let inst =

let rec inst env tyin tm =

match tm with

Var(n,ty) -> let tm’ = Var(n,type_subst tyin ty) in

if try not rev_assoc tm’ env = tm with _ -> false

then raise (Clash tm’) else tm’

| Const(c,ty) -> Const(c,type_subst tyin ty)

| Comb(s,t) -> qcomb (fun (t1,t2) -> Comb(t1,t2)) (inst env tyin) (s,t)

| Abs(y,t) -> (let y’ = qtry (inst [] tyin) y in

let env’ = (y,y’)::env in

if y = y’ then Abs(y,inst env’ tyin t) else

try Abs(y’,qtry (inst env’ tyin) t)

with (Clash(w’) as ex) ->

if not w’ = y’ then raise ex else

let ifrees = map (inst [] tyin) (frees t) in

let y’’ = variant ifrees y’ in

let z = Var(fst(dest_var y’’),type_of y) in

inst env tyin (Abs(z,vsubst[z,y] t))) in

fun tyin -> qtry (inst [] tyin);;

Note that qcomb just applies a function to arguments, but propagates an ‘un-
changed’ exception if applicable to both arguments. And qtry just traps out the
exception completely. Laziness is used to avoid calculating free variable lists more
than once, or at all where they are not needed. Bugs in the above code, or suggested
improvements, will be gratefully (though not gracefully) received.

We have changed the notion of generalized binding. For example, λ(x, y).P [x, y]
is a syntactic sugar (modulo a tagging constant called GABS for the prettyprinter)
εf. ∀x y. f(x, y) = P [x, y]. This generalizes to arbitrary varstructs, which need not
be based on disjoint, injective constructors (though otherwise the analog of beta
reduction needs to be justified by hand). It also simplifies the parser since pairing
does not have to be treated specially. In HOL, after all, pairing is just another binary
operator1. Finally, it generalizes in an obvious way to case expressions where there

1As in Classic ML — pity SML forgot this!

5

are several alternative matches.

7 Choice of Primitives

The existing HOL systems are notionally based on the primitive inference rules
ASSUME, REFL, BETA_CONV, SUBST, ABS, INST_TYPE, DISCH and MP and the axioms
BOOL_CASES_AX, IMP_ANTISYM_AX, ETA_AX, SELECT_AX and INFINITY_AX.

However in fact a large number of additional rules of inference are hardwired
in: ADD_ASSUM, AP_TERM, AP_THM, CCONTR, CHOOSE, CONJ, CONJUNCT1, CONJUNCT2,
CONTR, DISJ1, DISJ2, DISJ_CASES, EQT_INTRO, EQ_IMP_RULE, EQ_MP, ETA_CONV,
EXISTS, EXT, GEN, IMP_ANTISYM_RULE, IMP_TRANS, INST, MK_EXISTS, NOT_ELIM,
NOT_INTRO, SPEC, SUBS, SUBST_CONV, SUBS_OCCS, SYM and TRANS.

This situation is lamentable; one of the selling points of HOL is that all inference
is reduced to a few low-level primitives. Admittedly these pseudo-derived rules are
not very complicated, but they allow plenty of scope for making errors. For example,
in CHOOSE, the precise sideconditions on free variables require some care, whereas
they automatically appear from the proper derivation. In the source, proper derived
versions are given commented out, and the author has been told that they sometimes
perform differently (w.r.t. bound variable renaming for example).

Why has this situation arisen? In some cases, because a proper derivation
is simply too inefficient in practice (for example, SPEC). But in most cases the
inefficiency has little impact on overall system performance, since the rules are
very seldom used and the derivations are not too slow. The pseudo-derivations
are probably a historical relic from the time when even this small difference in
performance was significant.

We undertook an analysis of what would be a suitable set of small, simple
primitives in terms of which the others could be implemented efficiently. We decided
to adopt the following: REFL, SYM, TRANS, BETA_CONV, ABS, MK_COMB, ASSUME, DISCH,
MP, EQ_MP, IMP_ANTISYM_RULE, INST_TYPE, INST.

Why these choices? They are all simple. Except for INST_TYPE, INST and
BETA_CONV, they are almost trivial; these three involve the substitution and type
instantiation primitives. We decided to jettison SUBST in favour of a few more, but
simpler, rules, because its specification seems rather complicated for a primitive. In
any case, rewriting is based on the congruence rules which we adopt as primitive,
so SUBST hardly has a role except as an economical way of reaching these other
properties. We made IMP_ANTISYM_RULE a rule rather than an axiom because it
seems to belong naturally with the others. The primitives group naturally into
equivalence and congruence properties of equality, lambda calculus conversion, basic
properties of implication and its relationship to equality, and instantiation.

They are also sufficient to derive other rules efficiently. Because we have INST,
most other rules can be implemented based on a proforma theorem which can be
instantiated with efficient. The set of primitive chosen is of course redundant; we
know INST is derivable, but not efficiently, and REFL is a trivial consequence of
TRANS and any other equation (such as the result of BETA_CONV). By the way, since
TRANS works up to alpha-equivalence, alpha conversion is also easily derivable from
it, whereas a direct proof is too inefficient.

We now have axioms ETA_AX, SELECT_AX and INFINITY_AX. However we in-
troduce them slowly, because much of the logic can be developed without them;
we also do not introduce the selector itself till much later. Actually, we derive
BOOL_CASES_AX from SELECT_AX, but we also get a long way intuitionistically. This
necessitates a change in the definition of the existential quantifier, from:

let EXISTS_DEF = new_definition

‘$? = \P:A->bool. P($@ P)‘;;

6

to

let EXISTS_DEF = new_definition

‘$? = \P:A->bool. !Q. (!x. P x ==> Q) ==> Q‘;;

This definition, while opaque at first sight, is the natural infinitary analog of the
existing HOL definition of disjunction:

let OR_DEF = new_definition

‘$\/ = \t1 t2. !t. (t1 ==> t) ==> (t2 ==> t) ==> t‘;;

It is also intuitionistically admissible, as are all the other definitions of the
logical constants. In fact, they are exactly the definitions given by Prawitz (1965).
Note that Henkin (1963) showed how all the logical constants could be derived
classically from just a higher order function calculus. If we were really interested in
parsimony, every logical operation could be defined, and the turnstile regarded as
a logical operator.

As primitive principles of definition and type definition, we use only the core
constant of equality, and so avoid any dependence on defined notions like the ex-
istential quantifier. The primitive rule of term definition takes a theorem ` P (t)
for a closed term t and introduces a new constant symbol c and an axiom ` P (c).
The equational form of definition is trivially derivable using REFL and SYM, while
constant specification also becomes available once we add the selector. Actually,
the author favours taking equational definitions as basic and deriving specifications
from them; the objection that this makes equalities between constants introduced by
the same predicate provable can be evaded simply by throwing away the primitive
definition.

The primitive rule of type definition takes an explicit witness for the nonempti-
ness of the representing predicate, and returns the type bijections directly as un-
quantified universal theorems. Actually, this is a bit inconsistent with our efforts to
get along intuitionistically, since the existence of a total function out of the whole
representing type into the newly defined type is a weakly nonconstructive principle.
But the intuitionist core is mainly an aesthetic exercise, so this was not considered
important.

8 Logical Development

Our changes to the logical organization of the system was motivated by two princi-
ples:

• To get as far as convenient without introducing strong axioms; in particular
we get a long way without Choice, Excluded Middle or Extensionality. This
is largely an intellectual exercise, though one could imagine in the future that
someone might want to use HOL constructively.

• To make productive proof techniques (rewriting, tactics) available as early
as possible. This is because building up low-level infrastructure is tedious
without such techniques.

Accordingly we structured the basic logical theories in the following order:

1. Equality reasoning, including all the conversion combining operators like depth
conversions. This is independent of the logic proper, and it’s very useful to
have it available early.

7

2. Boolean theory: all the basic definitions of logical constants and their intro-
duction and elimination rules (all properly derived, mostly using proforma
theorems). All the reasoning is intuitionistic and non-extensional. (Perhaps
the name ‘Boolean’ is no longer appropriate!)

3. A few more sophisticated derived rules, mostly those which use matching, e.g.
rewriting and MATCH_MP_TAC. A simple form of second-order matching is used,
to allow rewriting with schematic theorems. For example, all the quantifier-
movement conversions in HOL are now implemented simply as rewrite rules.
The term nets used to speed up matching have been appropriately modified, so
this makes using these conversions automatically much faster. We also include
an intuitionistic tautology prover, based on exhaustive search in Kleene’s G3
sequent calculus.

4. Tools for associative-commutative operators, mainly elaborations of AC_CONV
in the existing HOL systems. These are also useful to have around early, since
they deal with some tedious theorems automatically.

5. Tactics and tacticals. We still don’t have the classical tactics BOOL_CASES_TAC,
ASM_CASES_TAC and COND_CASES_TAC, but all the others are supported, and
derived easily.

6. Additional theorems, mostly about quantifier movement and various degen-
erate cases of the quantifiers and logical operators. The derivations are much
easier given the availability of tactics and higher order rewriting.

7. Inductive definitions: general monotone inductive definitions are automated,
and most of the monotonicity goals are dealt with automatically. Inductive
definitions help in the definition of various theories, especially the natural
numbers and free recursive types. And the package uses no advanced logic or
theories: we still haven’t assumed Choice, Excluded Middle, Extensionality
or Infinity!

8. Now at last we throw in the axiom of extensionality (i.e. ETA_AX), and the
Hilbert Choice operator and its characterizing axiom. Excluded Middle is de-
rived from this, and we implement the few additional new facilities which we
can now derive: constant specification, the classical rules, tactics, and theo-
rems, and a classical tautology checker (which works by double negating and
calling the intuitionistic one!) We could do a lot more of the theory develop-
ment intuitionistically, but it would be increasingly tortuous and piecemeal,
and our main interests are not constructive.

9. We introduce the Axiom of Infinity and carve out the natural numbers from
the postulated Dedekind-infinite set using the inductive definitions package.
We also prove the recursion theorem for N using an inductive definition; this
is much shorter than the previous development.

10. We add various other useful theories; pairing, a neat little theory about well-
founded relations, and other odds and ends like function composition. We also
derive new_recursive_definition to automate recursive definitions given
the recursion theorem for a concrete recursive type (as yet we only have the
natural numbers, of course).

11. We develop natural number arithmetic. This is done much more rationally
than before, including the systematic use of primitive recursive definitions not
only for theoperators like addition, but also for the predicates. The proofs
are mostly short, and all of them are intuitionistically valid except one or two
forms of wellfoundedness. We include here a new scheme for numerals.

8

12. We develop a theory which supports general free recursive types; thanks to
inductive definitions we do not need any elaborate trees, but we simply build
a large enough set and carve out what we want inductively. Then we write
a function to automate the procedure starting from the proforma theorems
that this theory provides.

13. Then we have more theories, such as the reals, but now our system is much
like the existing implementations.

Now we will look at some of these things in more detail.

9 Higher order matching

In existing HOL implementations, the scope of rewriting, matching modus ponens
etc. is rather restricted because only first order matching is done. This means that
even quite simple schematic theorems need to be instantiated manually — a very
tedious task. For example, if we want to use the theorem:

SKOLEM_THM = |- !P. (!x. ?y. P x y) = (?y. !x. P x (y x))

to rewrite the term:

!n. ?m. m EXP 2 <= n /\ n < (SUC m) EXP 2

then simple rewriting won’t work; one first needs to instantiate the theorem with:

P = (\n m. m EXP 2 <= n /\ n < (SUC m) EXP 2)

then beta-reduce it, and only then rewrite with it. As a consequence, lots of quan-
tifier movement operations need to be implemented with specialized conversions
instead of just being represented as rewrite rules. There arise quite a lot of other
theorems where this kind of schematic matching is enormously convenient. Recently,
the author proved the following:

BOUNDS_DIVIDED = |- !P. (?B. !n. P n <= B) = (?A B. !n. n * P n <= A * n + B)

which is a very useful rewrite rule in some arithmetic goals.
Our implementation of higher order matching is simple, and does not have large

coverage. This is partly because of our ignorance and laziness, but the method we
have chosen has these properties: it is completely deterministic, it is quick, it has
been easily integrated with the term nets used to speed up matching, and it works
in most cases one wants (certainly all those exemplified above). Essentially, it will
perform a higher order match against P x1 . . . xn if and only if P is a free variable
(or only bound by outer universal quantifiers), while all the xi are bound variables
in the whole term. This means that there are unambiguous binding instances to
identify each xi, so the process is deterministic and fairly quick.

The term nets have been modified to linearize a term by stripping each combi-
nation and starting from the head rator. If this is a variable, then now the whole
term is treated as a variable (i.e. as a possible match for anything). Thanks to
term nets, there are not many bogus matching attempts, so applying higher or-
der rewrites using depth conversions can actually be dramatically faster than using
the corresponding conversion. Note, by the way, that even beta-conversion can be
implemented as a higher order rewrite rule, and hence conveniently thrown into a
bunch of rewrites instead of being called separately.

BETA_THM = |- !f y. (\x. f x) y = f y

9

But note that rewrites with the following theorem go into an infinite loop at any
beta-redex because of higher order matching!

ETA_AX = |- !t. (\x. t x) = t

The author still regularly commits this blunder, so it might be worth adding a
hack to look for these tricky cases and force only a first order match. The higher
order matching applies pervasively, not just in rewriting, but in other situations
like MATCH_MP_TAC. At first it was possible to switch it off by setting a global flag,
but since we never used it, the option was removed (which we may one day come
to regret). Accidental second order rewrites are seldom a problem, and always
picking a first order rewrite first has some unfortunate consequences. For example,
induction tactics now use MATCH_MP_TACwith the induction theorem. If a first order
match is picked first, then INDUCT_TAC on the goal:

!n. n + 1 >= n

instantiates the induction predicate to produce the following goal:

n + 1 >= 0 /\ (!x. n + 1 >= x ==> (SUC n) + 1 >= x)

which obviously isn’t what’s wanted.
The most significant defect of the current system is that bound variable names

are just taken from the rewriting theorem. So when rewriting with SKOLEM_THM

above, one actually gets:

?y. !x. y(x) EXP 2 <= x /\ x < (SUC y(x)) EXP 2

It’s not hard to think of ad-hoc solutions, but the author has yet to come up with
a simple, elegant scheme for dealing with this problem. Note that even comparing
the bound variable names on both sides of the equation can be tricky, since in
SKOLEM_THM, the variable y has a different type on one side.

10 Inductive definitions

Inductive definitions are very useful; once one knows about them, they can be seen
in all sorts of situations. As we have already remarked, we use them to define the
natural numbers and other free inductive types, and to prove the recursion theorem
for such types by inductively defining the graph of the recursive function. This
approach extends to the wellfounded recursion theorem.

We have implemented quite a general package, which supports mutual recursion,
additional schematic arguments, and arbitrary monotone hypotheses (with an auto-
matic proof of most monotonicity goals). It produces theorems giving closure rules,
induction and an equational cases theorem. For more details of the implementation,
see Harrison (1995). Let us just remark that the complete development uses only
some very simple logical principles; it’s entirely done without Extensionality, Choice
or Excluded Middle.

11 Proving the Law of Excluded Middle

It’s a well-known fact that the Law Of Excluded Middle is derivable from some
forms of the Axiom of Choice. Tom Melham once raised the question of whether
such a derivation could be done in HOL. Thanks to the system reorganization, we
(i) can be sure that we aren’t unwittingly appealing to LEM in the proof, and (ii)
can take advantage of tactics to make the proof easier.

10

The idea of the proof, from Beeson (1984), is as follows. Let t be any proposition.
Consider the sets:

A = {x | (x = ⊥) ∨ (x = >) ∧ t}

B = {x | (x = ⊥) ∧ t ∨ (x = >)}

Obviously, since ⊥ ∈ A and > ∈ B, we have

∀s. s ∈ {A, B} ⇒ ∃y. y ∈ s

Now using the choice operator to define f = λs. εy. y ∈ s, the characterizing
axiom gives us:

∀s. s ∈ {A, B} ⇒ f(s) ∈ s

(Note that the selector immediately allows the weaker nonconstructive principle
of permuting the existential quantifier and implication — in a constructive logic,
selectors need to be partial functions to avoid this.) So:

(f(A) = ⊥) ∨ (f(A) = >) ∧ t

and

(f(B) = ⊥) ∧ t ∨ (f(B) = >)

Now consider the four cases which these theorems give us. Three of them yield t

immediately, and the remaining case, f(A) = ⊥ and f(B) = >, tells us that A 6= B

(since f is a function). But since t ⇒ (A = B), we must have ¬t.

let EXCLUDED_MIDDLE = prove

(‘!t. t \/ ~t‘,

GEN_TAC THEN SUBGOAL_THEN

‘(((@x. (x = F) \/ (x = T) /\ t) = F) \/

((@x. (x = F) \/ (x = T) /\ t) = T) /\ t) /\

(((@x. (x = T) \/ (x = F) /\ t) = T) \/

((@x. (x = T) \/ (x = F) /\ t) = F) /\ t)‘

MP_TAC THENL

[CONJ_TAC THEN CONV_TAC SELECT_CONV THENL

[EXISTS_TAC ‘F‘; EXISTS_TAC ‘T‘] THEN

DISJ1_TAC THEN REFL_TAC; ALL_TAC] THEN

DISCH_THEN STRIP_ASSUME_TAC THEN

TRY(DISJ1_TAC THEN FIRST_ASSUM ACCEPT_TAC) THEN

MP_TAC(ITAUT ‘~(T = F)‘) THEN

POP_ASSUM_LIST(PURE_ONCE_REWRITE_TAC o map SYM) THEN

DISCH_THEN(prefix THEN DISJ2_TAC o MP_TAC) THEN

MATCH_MP_TAC(ITAUT ‘(a ==> b) ==> ~b ==> ~a‘) THEN

DISCH_THEN(SUBST1_TAC o EQT_INTRO) THEN

GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV)

[ITAUT ‘a \/ (b /\ T) = b \/ (a /\ T)‘] THEN

REFL_TAC);;

12 Arithmetic

Our theory of arithmetic is completely new, though quite a lot of the theorems are
similar. We have decided to adopt a more rational naming convention (the existing
theorem is almost a case study in bad naming). This leads to some considerable
incompatibility with previous versions of the system (though a compatibility module
would be easy enough to rig up). Furthermore, we have changed some of the
definitions, so that everything, including relations, is defined in a uniform recursive
style:

11

let PRE = new_recursive_definition num_Axiom

‘(PRE 0 = 0) /\

(!n. PRE (SUC n) = n)‘;;

let ADD = new_recursive_definition num_Axiom

‘(!n. 0 + n = n) /\

(!m n. (SUC m) + n = SUC(m + n))‘;;

let MULT = new_recursive_definition num_Axiom

‘(!n. 0 * n = 0) /\

(!m n. (SUC m) * n = (m * n) + n)‘;;

let EXP = new_recursive_definition num_Axiom

‘(!m. m EXP 0 = 1) /\

(!m n. m EXP (SUC n) = m * (m EXP n))‘;;

let LE = new_recursive_definition num_Axiom

‘(!m. (m <= 0) = (m = 0)) /\

(!m n. (m <= SUC n) = (m = SUC n) \/ (m <= n))‘;;

let LT = new_recursive_definition num_Axiom

‘(!m. (m < 0) = F) /\

(!m n. (m < SUC n) = (m = n) \/ (m < n))‘;;

let GE = new_definition

‘m >= n = n <= m‘;;

let GT = new_definition

‘m > n = n < m‘;;

let EVEN = new_recursive_definition num_Axiom

‘(EVEN 0 = T) /\

(!n. EVEN (SUC n) = ~(EVEN n))‘;;

let ODD = new_recursive_definition num_Axiom

‘(ODD 0 = F) /\

(!n. ODD (SUC n) = ~(ODD n))‘;;

let SUB = new_recursive_definition num_Axiom

‘(!m. m - 0 = m) /\

(!m n. m - (SUC n) = PRE(m - n))‘;;

let FACT = new_recursive_definition num_Axiom

‘(FACT 0 = 1) /\

(!n. FACT (SUC n) = (SUC n) * FACT(n))‘;;

All the proofs, with the exception of one or two versions of wellfoundedness, are
intuitionistically and extensionally admissible. This remark has been verified by
setting up the real number axioms without the classical stuff loaded in. (Note that
in this framework, the uniqueness part of the recursion theorem is not exactly true,
though the introduction of recursive functions is still intuitionistically admissible.)
In practice avoiding Excluded Middle is almost trivial because induction and cases
are still true, so all the familiar theorems like the totality of the ordering still hold.
Most theorems can be proved mechanically starting with induction.

13 Numerals

An embarrassment in the existing HOL systems is the status of numerals. They
are implemented as an infinite family of constants, with the defining axiom schema
n + 1 = SUC n produced by mk_thm. We can object to this on grounds of logical
correctness, as it builds in a dependency on the native bignum package (hol90
simply gives up if one tries to go beyond machine arithmetic). Furthermore, it is
exceedingly slow to do explicit numerical calculations involving large numbers. We

12

have solved this in our system along the lines of Tim Leonard’s numeral library for
HOL88. Right after defining addition in the arithmetic theory, we make the following
two definitions:

let BIT0 = new_definition

‘BIT0 n = n + n‘;;

let BIT1 = new_definition

‘BIT1 n = SUC(n + n)‘;;

These allow numbers to be written in binary (least significant bit first), e.g. 13 is
BIT1(BIT0(BIT1(BIT1(0)))). The parser and printer automatically handle this
transformation (of course this is still prone to bugs, but at least it’s separated from
the logical core). The remaining system is built using this notion of numeral; note
that 0 is still a constant, SUC still exists, and num_CONV is easily implemented as
a derived rule for compatibility.

Arithmetic with these numerals is much, much faster. Five-digit numbers can
be multiplied by proof in a few seconds. What’s more, most arithmetic operations
can be implemented as a set of rewrite rules! Throwing these into a rewrite will
automatically do numeral arithmetic. Here are some examples.

ARITH_ADD =

|- (0 + 0 = 0) /\

(!n. 0 + BIT0 n = BIT0 n) /\

(!n. 0 + BIT1 n = BIT1 n) /\

(!n. BIT0 n + 0 = BIT0 n) /\

(!n. BIT1 n + 0 = BIT1 n) /\

(!m n. BIT0 m + BIT0 n = BIT0 (m + n)) /\

(!m n. BIT0 m + BIT1 n = BIT1 (m + n)) /\

(!m n. BIT1 m + BIT0 n = BIT1 (m + n)) /\

(!m n. BIT1 m + BIT1 n = BIT0 (SUC (m + n)))

ARITH_LE =

|- (0 <= 0 = T) /\

(!n. BIT0 n <= 0 = (n = 0)) /\

(!n. BIT1 n <= 0 = F) /\

(!n. 0 <= BIT0 n = T) /\

(!n. 0 <= BIT1 n = T) /\

(!m n. BIT0 m <= BIT0 n = m <= n) /\

(!m n. BIT0 m <= BIT1 n = m <= n) /\

(!m n. BIT1 m <= BIT0 n = m < n) /\

(!m n. BIT1 m <= BIT1 n = m <= n)

ARITH_SUB =

|- (0 - 0 = 0) /\

(!n. 0 - BIT0 n = 0) /\

(!n. 0 - BIT1 n = 0) /\

(!n. BIT0 n - 0 = BIT0 n) /\

(!n. BIT1 n - 0 = BIT1 n) /\

(!m n. BIT0 m - BIT0 n = BIT0 (m - n)) /\

(!m n. BIT0 m - BIT1 n = PRE (BIT0 (m - n))) /\

(!m n. BIT1 m - BIT0 n = (n <= m => BIT1 (m - n) | 0)) /\

(!m n. BIT1 m - BIT1 n = BIT0 (m - n))

Evidently, rewriting with ARITH_SUB is a bit inefficient, since the same condition
is tested repeatedly. However this isn’t too bad in practice, and if one really wants
high performance arithmetic, special conversions along the lines of the existing
reduce library could be written (for example, the numeral library uses asymptoti-
cally faster optimizations for multiplication, a tweak added by the present author).
Alternatively, one could set up a separate type of numerals (though this would be
less trivial than the above two definitions). This would mean, since every numeral
would have the prescribed form of a list of zeros and ones, one could prove general

13

‘metatheorems’ and so justify the use of some optimized rewrites. For example, one
could have an auxiliary subtraction function, valid only when the result is positive,
and invoke this after just one comparison of the input numerals. The problem of
providing a good set of rewrites for division and remainder has not yet been solved.
It seems quite hard without building in non-confluence, but we believe it’s probably
possible. Any ideas?

14 The future

This version of HOL is steadily becoming the preferred platform for our own re-
search. This isn’t practical for most HOL users, since we don’t have any of the
libraries (except the reals, which nobody else uses anyway), and we don’t have the-
ory files, still less autoloading. The system is meant mainly as a vehicle for research,
and a testbed for ideas to put into hol90. However it has a certain life of its own
(compare PVS and EHDM!) It seems a good basis for learning about LCF-style
theorem proving; a good survey article could be based on a fairly low-level walk
through the ML code, since it’s relatively clean, though in places pretty incompre-
hensible. We believe that some of the changes, in particular numerals and higher
order matching, should be considered a sine qua non for future mainstream HOL
versions.

References

Beeson, M. J. (1984) Foundations of constructive mathematics: metamathematical
studies, Volume 3 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-
Verlag.

Boulton, R. J. (1993) Efficiency in a fully-expansive theorem prover. Technical
Report 337, University of Cambridge Computer Laboratory, New Museums Site,
Pembroke Street, Cambridge, CB2 3QG, UK. Author’s PhD thesis.

Gordon, M. J. C. and Melham, T. F. (1993) Introduction to HOL: a theorem proving
environment for higher order logic. Cambridge University Press.

Harrison, J. (1995) Inductive definitions: automation and application. In Windley,
P. J., Schubert, T., and Alves-Foss, J. (eds.), Higher Order Logic Theorem Proving
and Its Applications: Proceedings of the 8th International Workshop, Volume ???
of Lecture Notes in Computer Science, Aspen Grove, Utah, pp. ?–? Springer-
Verlag. To appear.

Harrison, J. and Slind, K. (1994) A reference version of HOL. Pre-
sented in poster session of 1994 HOL Users Meeting and only published
in participants’ supplementary proceedings. Available on the Web from
http://www.dcs.glasgow.ac.uk/~hug94/sproc.html.

Henkin, L. (1963) A theory of propositional types. Fundamenta Mathematicae, 52,
323–344.

Melham, T. F. (1992) The HOL logic extended with quantification over type vari-
ables. In Claesen, L. J. M. and Gordon, M. J. C. (eds.), Proceedings of the IFIP
TC10/WG10.2 International Workshop on Higher Order Logic Theorem Proving
and its Applications, Volume A-20 of IFIP Transactions A: Computer Science
and Technology, IMEC, Leuven, Belgium, pp. 3–18. North-Holland.

14

Prawitz, D. (1965) Natural deduction; a proof-theoretical study, Volume 3 of Stock-
holm Studies in Philosophy. Almqvist and Wiksells.

15

