
Order-Sorted Polymorphism in Isabelle∗

Tobias Nipkow†

Institut für Informatik

TU München

Postfach 20 24 20

8000 München 2

Germany

April 1992

Abstract

ML-style polymorphism can be generalized from a single-sorted algebra of types to an
order-sorted one by adding a partially ordered layer of “sorts” on top of the types. Type
inference proceeds as in the Hindley/Milner system, except that order-sorted unification of
types is used. The resulting system has been implemented in Isabelle to permit type variables
to range over user-definable subsets of all types. Order-sorted polymorphism allows a simple
specification of type restrictions in many logical systems. It accommodates user-defined
parametric overloading and allows for a limited form of abstract axiomatic reasoning. It can
also explain type inference with Standard ML’s equality types and Haskell’s type classes.

1 Introduction

This paper describes a recent extension of the generic theorem prover Isabelle. The extension,
namely the introduction of “order-sorted polymorphism”, was motivated by the desire to obtain
simple axiomatizations of typed object-logics. The rest of the introduction is devoted to Isabelle
and the motivation for its extension. Section 2 introduces the new type system by way of
examples: a series of object-logic definitions is shown which demonstrate the various aspects of
the type system. Section 3 describes the underlying technicalities, including type inference and
higher-order unification. It is followed by a section of a more speculative nature which discusses
order-sorted polymorphism as a module facility for abstract axiomatic reasoning. Section 5
sketches how to rephrase Standard ML’s type system in terms of order-sorted polymorphism.

Isabelle is a generic interactive theorem prover developed by Lawrence Paulson [21, 22]. It
is generic in the sense that it can be parameterized with the intended object-logic. Its meta-
logic is intuitionistic higher-order logic and its inference mechanism is based on higher-order
unification. In order to distinguish the old and the new version of Isabelle I will use the qualifiers
“90” and “91”, respectively.

The presentation of an object-logic in Isabelle-90 consists of

∗Isabelle is written in Standard ML. The source files and documentation can be obtained free of charge by

contacting the author.
†E-mail: Tobias.Nipkow@Informatik.TU-Muenchen.De. Research supported by ESPRIT BRA 3245, Logical

Frameworks, and carried out at the Computer Laboratory, University of Cambridge.

1

• a signature extension, introducing the new types and constants describing the syntax of
formulae, and

• new axioms describing the inference rules of the logic.

In the sequel I use an OBJ-inspired [7] syntax which is very close to the format actually used in
the implementation. As a tiny example, consider the following definition of propositional logic.

Prop = types form
consts ∧ : form → form → form

¬ : form → form
[] : form → prop

rules [P] =⇒ [Q] =⇒ [P ∧ Q]
([¬P] =⇒ [P]) =⇒ [P]

The only new type is form, the type of formulae. The only connectives are conjunction (∧)
and negation (¬). In Isabelle-90, constants can be of base type or of arbitrary function type
over the base types. Although the absence of a nullary constant, for example true, means there
are no closed formulae, expressions like P ∧Q, where P and Q are variables, are legal, provided
both P and Q are of type form. Variables need not be declared and their type is inferred
automatically: writing P ∧ Q forces P and Q to have type form. Finally there is the constant
[] which maps form to the predefined type prop of propositions. The proposition [P] should be
read as “The formula P is provable”. This coercion is necessary because object-level inference
rules are written as meta-level axioms, i.e. expressions of type prop. For example the first rule
above is the linear form of the text-book inference

P Q

P ∧ Q

using the pre-defined meta-level implication =⇒ of type prop → prop → prop. Hence it is
impossible simply to write P =⇒ Q =⇒ P ∧Q. In the sequel square brackets are dropped. This
improves readability and is in line with actual Isabelle practice, where parser and pretty-printer
take care of such matters.

This is an intentionally fragmentary presentation of propositional logic — many rules and
connectives are missing. Throughout the paper I adopt the convention of presenting only as
much of a logic as is necessary to make certain points.

We can now extend propositional logic to a single sorted first-order logic by adding a new
type of terms and a quantifier:

Pred = Prop + types term
consts ∀ : (term → form) → form
rules ∀(P) =⇒ P (t)

Because Isabelle is based on higher-order logic, its expressions are simply typed λ-terms. Quan-
tifiers can thus be expressed as functionals. This means that internally the formula ∀x.P (x),
where P is of type term → form, is represented as ∀(λx.P (x)), which is equivalent to ∀(P).
Again, parser and pretty-printer permit these different concrete syntaxes to coexist. The one
inference rule shown is ∀-elimination or specialization.

This definition of predicate logic is fine as far as it goes, but has one major drawback: it
is single-sorted, i.e. there is only a single type term of individuals. Any attempt to do many-
sorted logic on top of it is as prone to type errors as programming in an untyped language. If we

2

were to extend Pred further by two constants succ : term → term and [] : term representing
the successor function on natural numbers and the empty list, the (in our understanding)
meaningless expression succ([]) is well-formed and of type term. There are several ways to deal
with the problem of representing typed object-logics in Isabelle.

The generic representation of typed logics in Isabelle, and in any other such system, is to
introduce types and type checking into the object-language. This means there is a new type of
object-level types and the inference rules are augmented to ensure that only well-typed theorems
can be deduced. Under this approach, the definition of Pred might look as follows:

Pred = Prop + types term, type
consts ∀ : type → (term → form) → form

∈ : term → type → prop
rules t ∈ T =⇒ ∀(T, P) =⇒ P (t)

The universal quantifier has acquired a new argument, namely the type that the bound variable
is ranging over. The judgement ∈ is introduced to form explicit typing assertions at the object-
level. The rule of specialization is guarded by the expression t ∈ T which makes sure that only
elements of the right type are substituted for the bound variable.

A further extension with new object-level types, say the natural numbers, might look like
this:

Nat = Pred + consts nat : type
0 : term

succ : term → term
rules 0 ∈ nat

n ∈ nat =⇒ succ(n) ∈ nat

In general this explicit axiomatization of typing rules is the only way to proceed, in particular
if the type system is undecidable, for example Intuitionistic Type Theory [15]. On the other
hand, it is frustrating to deal with object-logic typing judgements for simple systems like many-
sorted predicate logics. Not only does it clutter up the specification of the logic, but it also
introduces additional type checking obligations during a proof. Although these proof obligations
can be dealt with automatically by tactics, the incurred overhead is often significant. This is
particularly annoying because Isabelle has a built-in type inference system which is quite capable
of dealing with many sorted logics, provided the meta-logic type system is used.

The idea of identifying meta-logic and object-logic types is the key to inheriting Isabelle’s
built-in facilities. Of course it presupposes that the object-logic type system is weak enough.
It fails for logics with dependent types or subtypes, neither of which can be modelled by the
simple meta-types. In fact, in Isabelle-90 the idea does not work at all, as we shall now see. It is
straightforward to declare different meta-types like nat and list and constants succ : nat → nat
and [] : list, thus preventing expressions like succ([]). However, we now need a quantifier for
each of these types, i.e. ∀nat : (nat → form) → form and ∀list : (list → form) → form, and
the corresponding rules for each of them. This may just about be feasible for a small number
of fixed types but is completely impractical in general.

In order to make this approach work, we need polymorphism, which is exactly what Isabelle-
91 and this paper are all about. However, a näıve adoption of ML-style polymorphism is
dangerous, as the following example shows:

Pred = Prop + consts ∀ : (α → form) → form
rules ∀x.P (x) =⇒ P (t)

3

The universal quantifier has a polymorphic type. The type variable α is implicitly universally
quantified at the level of types, as is the usual practice. Type inference determines the following
typings of the variables in the specialization rule: x : α, P : α → form and t : α. Unfortunately,
this specification is too general, at least for first-order logic. The intention is that α ranges only
over different types of “individuals”, but certainly not over formulae or arbitrary function types.
However, there is nothing in this declaration to enforce those constraints. As a consequence,
some rather surprising inferences are possible. Using the substitution {α 7→ form,P 7→ λx.x},
specialization degenerates to ∀x.x =⇒ t. In a first order-logic, ∀x.x is simply ill-formed. This
formula could only arise because of the instantiation of α by form. In a higher-order logic,
∀x.x is a perfectly legitimate formula, usually identified with falsity, and the rule expresses ex
falso quodlibet.

2 Order-Sorted Polymorphism by Example

Having demonstrated the need for tighter control over instantiations of type variables, this sec-
tion describes a simple extension of the Hindley/Milner type discipline which achieves just that
without sacrificing any of the properties that make Hindley/Milner polymorphism attractive.
The basic idea is to introduce an additional layer of sorts on top of the types, together with
a new judgement τ : s, where τ is a type and s a sort. This means in particular that type
variables have a sort, thus restricting their instantiations to types of the required sort. Sorts
denote subsets of the set of all types. In order to specify hierarchies of such subsets, sorts can
be partially ordered, thus leading to an order-sorted algebra of types. It must be stressed that
there is no notion of subtypes involved. This is in contrast to, for example, OBJ [7], where the
types1 themselves are partially ordered.

Although this notion of sorts is superficially similar to the notion of “kinds” in the Edinburgh
Logical Framework [9], the reader will see that it is qualitatively quite different, not least
because of the partial order on sorts. It is much more closely related to the Haskell notion of
“classes” [10, 20].

2.1 Specifying Logics

We will now introduce the different features of order-sorted polymorphism by example, going
through a series of logic definitions in Isabelle-91, starting with Isabelle’s meta-logic. As we are
only interested in the type system, none of the inference rules are shown.

Meta = sorts >
types → : (>,>)>

prop : >
consts

∧

: (α> → prop) → prop
=⇒ : prop → prop → prop
≡ : α> → α> → prop

Since Meta is not an extension of anything else, we start from ground zero, i.e. no sorts, types
etc. are known. The sorts section, not present in Isabelle-90, introduces a single new sort >.
The intention is that > should be the sort of all types. The types section is different from its
Isabelle-90 counterpart in that it does not just list the types but also gives them an arity. Here

1called sorts in that context, making the terminology somewhat confusing.

4

there are two types, namely the base type prop of sort > and the function type constructor →
which takes two arguments of sort > and returns a result of sort >. The notation t : (s1, . . . , sn)s
was chosen instead of something like t : s1 → · · · → sn → s in order not to overload →. Note
that with respect to the current type signature, all types built from prop and →, i.e. all ground
types, are indeed of sort >.

The consts section introduces the three basic connectives of the meta-logic: universal quan-
tification, implication, and equality. The type of

∧

is very general, i.e. it is possible to quantify
over prop and over arbitrary function types. Thus we have defined an impredicative meta-logic.
A predicative variant could have been defined as follows:

Meta′ = sorts >
i < >

types → : (>,>)>
prop : >

consts
∧

: (αi → prop) → prop
=⇒ : prop → prop → prop
≡ : α> → α> → prop

Here we introduced a subsort i of “individuals”. So far, no type lies in i, but the intention
is that types introduced in object-logics should reside there if they are to be quantified over.
Meta-level quantification over prop or function types is excluded because neither are of sort i.
Thus we have arrived at a predicative meta-logic.

Object-logics are defined as extensions of the meta-logic. In order to demonstrate the full
flexibility of order-sorted polymorphism we look at definitions of first-, second-, and higher-order
logic.

FOL = Meta + sorts i < >
types form : >
consts True : form

= : αi → αi → form
∀ : (αi → form) → form

Quantification over and equality between formulae or function types is ruled out because neither
has sort i. For example True = True is not well-typed. The sort i of “individuals” is initially
empty but further extensions may change this:

Nat = FOL + types nat : i
consts 0 : nat

succ : nat → nat

The formula ∀x.x = 0 is legal, with x having the inferred type nat which is of sort i. On the
other hand ∀f.f(0) = 0 is ill-typed because f must have type nat → nat which is not of sort i.

A more liberal dose of quantification is granted in second-order logic:

SOL = Meta + sorts q < >
i < q
p < q

types form : p
→ : (i, p)p

consts ∀ : (αq → form) → form

5

This type structure is more involved. The sort q denotes all types that one can quantify over.
These are all individuals (hence i < q) and all n-ary predicates of type τ1 → · · · → τn → form,
where each τj is a type of sort i, such as nat. The latter set of types is called p and there are
two declarations which generate types in p: form is in p, corresponding to the case n = 0,
and if τ : i and σ : p, then τ → σ is also in p. It should be clear that this defines exactly the
intended set of predicate types.

SOL is interesting because it presents a new feature of the type system, namely overloading:
the function type constructor has two arities, (>,>)>, which is inherited from Meta, and (i, p)p.
Neither subsumes the other: form→form : > and nat→form : p require the first and second
arity respectively.

Another example of overloading is found in the definition of higher-order logic:

HOL = Meta + sorts i < >
types form : i

→ : (i, i)i
consts ∀ : (αi → form) → form

Here we need only the subsort i of individuals which contains form and any function type over
individuals.

It should be stressed that the declaration of sorts, types and constants resembles the assertion
of axioms: there is no way that Isabelle could check the “correctness” of these declarations. For
example, it is possible to extend FOL with a type declaration form : i, thus enabling the
quantification over formulae and stepping outside first-order logic.

2.2 Overloading

The flavour of all the examples so far is that of parametric polymorphism. This section shows
how order-sorted polymorphism can also be used to specify ad-hoc polymorphism or overloading.
Suppose we would like to use the symbols + and ≤ at more than one type, for example both
natural numbers and strings (where + might denote concatenation). Isabelle’s type system does
not allow the simultaneous declaration

consts + : nat → nat → nat
+ : string → string → string

However, + and ≤ can be declared once and for all as polymorphic operators:

OFOL = FOL + sorts a < i
o < i

consts + : αa → αa → αa

≤ : αo → αo → form

This requires some explanation. The two sorts a and o are meant to represent those types
which provide addition (+) and an ordering (≤) respectively. More precisely, any type τ of sort
a automatically gives rise to a constant + : τ → τ → τ , and similarly for ≤. At the moment
there are no such types, but it is still possible to state some generic rules for these operations,
for example:

rules x ≤ x
x + y = y + x

6

Of course such polymorphic assertion may be a bit rash: commutativity of + rules out its use
for string or list concatenation. A more general treatment of overloaded operations satisfying
certain laws can be found in Section 4.

So far we only have generic operations but no instances. The latter are created by asserting
that some type is of sort a or o:

Nat = OFOL + types nat : a
nat : o

consts 0 : nat
succ : nat → nat

rules 0 + n = n
succ(m) + n = succ(m + n)
0 ≤ n
succ(m) ≤ succ(n) ↔ m ≤ n
¬(succ(m) ≤ 0)

We could further enrich Nat with strings and define a suitable concatenation and ordering on
strings, provided strings are also declared to be of sorts a and o. However, that would create a
problem: what is the type of x in

(x ≤ x) ∧ (x + y = y + x) ? (1)

Morally one would expect it to be αa and αo simultaneously, but there is no sort which subsumes
both a and o. Hence this formula is ill-typed in the context of OFOL. In the presence of both
nat and string, however, there are two valid, and in fact most general typings: x : int and
x : string. Hence we have lost the principal type property, i.e. expressions fail to have most
general types. In Isabelle this situation cannot arise because the system will only admit those
type and sort declarations which preserve the principal type property. Exactly which restrictions
Isabelle enforces is discussed in the next section. The problem with Nat is that nat does not
have a least sort. Hence it is necessary to declare a new sort ao which lies below both a and
o, i.e. ao is the intersection of the types in a and o: OFOL should contain a third sort clause
ao < a, o, and both nat and string should be declared to be of sort ao. The variable x in
(1) now has type ao. In general this leads to an exponential blow-up in the number of sorts
required, as one has to span the whole powerset of basic sorts. A more refined type system than
the one implemented in Isabelle would automatically operate on the powerset level and x in (1)
would be assigned the type α{a,o}. This is precisely what happens in Haskell [10, 20]. A similar
type system, where the sort names are identified with the names of the overloaded operators,
i.e. a ∼= + and o ∼= ≤, was first proposed by Stefan Kaes [14] who also noted the connection
with order-sorted unification.

It should have become clear that the two uses of order-sorted polymorphism in sections
2.1 and 2.2 correspond to parametric and ad-hoc polymorphism respectively. In Section 2.1
specific types like nat inherit both the names and the properties of generic operations like
quantification and equality: ∀ on natural numbers behaves exactly like ∀ on any other type of
sort i. In Section 2.2, on the other hand, + is declared without any properties attached, and
nat inherits only the name, but defines its own laws for +, which may be quite different from
those for + on strings.

7

3 Order-Sorted Types and Unification

The examples of the previous section should have prepared the ground for the general notion
of order-sorted polymorphism which this section presents in a largely Isabelle-independent way.
We begin technicalities by summarizing and restating some basic notions of order-sorted algebras
(see, for example, [24]) in terms of types.

Fix a set of sorts S and a set of type constructors T . An (order-sorted) type signature is a
pair (≤,Σ) where ≤ is a partial order on S and Σ ⊆ T × S∗ × S is a set of declarations. In
Isabelle-91 these two components are declared in the sorts and types sections respectively. In
the sequel let (≤,Σ) be some arbitrary but fixed type signature and let X =

⋃

s∈S Xs be an
S-sorted family of disjoint sets of variables. Instead of (t, w, s) ∈ Σ we write t : (w)s. The
relation ≤ extends to S∗ in the componentwise way.

The set of sorted types is inductively defined as follows:

α ∈ Xs

α : s

t : (sn)s ∀i. τi : si

t(τn) : s

τ : s s ≤ s′

τ : s′

In the sequel τ denotes arbitrary types, α and β stand for elements of X, and we write αs to
indicate that α ∈ Xs. Note that “→” is just one among many other type constructors and
needs no special treatment.

3.1 Order-Sorted Unification

In Isabelle-91, the principal operation on types is unification. It is required both for type
inference and resolution. The definitions of substitutions, unifiers, complete sets of unifiers
etc. are straightforward generalizations of the unsorted case and can be found in the general
literature on order-sorted unification [23, 24, 16].

Order-sorted unification differs from unsorted unification in the cardinality of minimal com-
plete sets of unifiers. In the unsorted case it is at most 1 (called unitary), in the order-sorted
case it depends on the structure of ≤ and Σ and may be infinite. Isabelle-91 is restricted to
unitary type signatures. Thus the principal type property for the language of terms is guaran-
teed and the nondeterminism of higher-order unification does not increase further. Although
there are precise characterizations of unitary type signatures [28], the implementation relies on
two sufficient but not necessary criteria, regularity and coregularity, which lead to particularly
simple algorithms.

A type signature is regular if every type has a least sort. Regularity is decidable for finite
signatures:

Theorem 3.1 (Smolka et al. [24]) A signature (≤,Σ) is regular iff for every t ∈ T and w ∈ S ∗

the set {s | ∃w′ ≥ w. t : (w′)s} either is empty or contains a least element.

Regularity is essential because order-sorted unification in non-regular signatures may be infini-
tary [24]. To arrive at unitary signatures we need two additional properties.

s1 u s2 = {s | s ≤ s1 ∧ s ≤ s2}

D(t, s) = {w | ∃s′. t : (w)s′ ∧ s′ ≤ s}

A partial ordering is called downward complete if any two elements with a lower bound have a
greatest lower bound, i.e. if s1 u s2 either is empty or contains a greatest element. A signature

8

is coregular if for all t ∈ T and all s ∈ S the set D(t, s) either is empty or contains a greatest
element. The finitary version of the following lemma goes back to Schmidt-Schauß and is also
given by Smolka et al. [24].

Lemma 3.2 Every regular, downward complete, and coregular signature is unitary.

Isabelle-91 requires all type signatures to be regular, downward complete, and coregular, thus
enforcing unitary unification. Comparing this lemma with the results of Waldmann [28] it turns
out that only coregularity is unnecessarily strong. However it leads to a very simple algorithm
described below. This algorithm is a specialization of known algorithms to downward complete
and coregular signatures. Its correctness and completeness can easily be established by means
of program transformation.

The algorithm is expressed by rewrite rules on pairs 〈E, θ〉, where E is the list2 of pairs
τ =? τ ′, the problems yet to be solved, and θ is a substitution, the fragment of the solution
computed so far. Solving such a pair means rewriting it to normal form. If the normal form
is 〈[], θ〉, then θ is the solution to the initial problem. Otherwise the initial problem has no
solution.

〈(α =? α) :: E, θ〉 =⇒ 〈E, θ〉
〈(τ =? α) :: E, θ〉 =⇒ 〈(α =? τ) :: E, θ〉 if τ 6∈ X
〈(αs =? τ) :: E, θ〉 =⇒ 〈θ′(E),W (τ, s) ◦ θ′ ◦ θ〉 if α does not occur in τ

and θ′ = {α 7→ τ}
〈(t(τn)=? t(τ ′

n)) :: E, θ〉 =⇒ 〈[τ1 =? τ ′
1, . . . , τn =? τ ′

n]@E, θ〉

The only interesting case is the variable-term one. In contrast to unsorted unification it is not
possible simply to map αs to τ because τ might not be of sort s. However, there may exist
a weakening, i.e. a sort-decreasing mapping from X to X, which forces the sort of τ down to
s. W (τ, s) computes the most general weakening θ such that θ(τ) is of sort s. If there is a
weakening at all, coregularity implies the existence of a most general one.

The presentation of W is simplified by bringing it into tail recursive form. The call W (ps, θ),
where ps is a list of type-sort pairs and none of the variables in the domain of θ occur in ps,
computes the most general instance θ ′ of θ such that θ′(τ) : s for every pair (τ, s) in ps.

W (τ, s) = W ([(τ, s)], {})

W ([], θ) = θ

W ((αs, s
′) :: ps, θ) =

{

W (ps, θ) if s ≤ s′

W (θ′(ps), θ′ ◦ θ) where θ′ = {α 7→ βglb(s,s′)} and β is new

W ((t(τn), s) :: ps, θ) = W ([(τ1, s1), . . . , (τn, sn)]@ps, θ) where (s1, . . . , sn) = dom(t, s)

W relies on the two partial functions glb and dom which are defined as follows: glb(s1, s2) = s
if max(s1 u s2) = {s} and dom(t, s) = w if max(D(t, s)) = {w}; otherwise they are undefined.
Due to downward completeness and coregularity both functions can be stored in pre-computed
tables. Table lookup at undefined positions results in failure of the unification algorithm.

3.2 Terms and Type Inference

Isabelle is based on the intuitionistic fragment of Church’s Higher-Order Logic [1] and hence
its terms are typed λ-terms. The grammar for “raw”, i.e. as yet untyped, terms is shown

2Standard ML list notation is used.

9

Identifiers x
Expressions e = x

| (e0 e1)
| λx.e
| let x = e0 in e1

Sorts s
Types τ = αs | t(τ1, . . . , τn)
Type schemes σ = τ | ∀αs.σ

Figure 1: Mini-ML expressions and types

ASM
A(x) � τ

A ` x : τ

APP
A ` e0 : τ → τ ′ A ` e1 : τ

A ` (e0 e1) : τ ′

ABS
A + {x 7→ τ} ` e : τ ′

A ` λx.e : τ → τ ′

LET
A ` e0 : τ T V(τ) − T V(A) = {αs1

, . . . , αsk
} A + {x 7→ ∀αsk

.τ} ` e1 : τ ′

A ` let x = e0 in e1 : τ ′

Figure 2: Type inference for Mini-ML

in Figure 1. Let us call this language Mini-ML [2]. It goes beyond what is implemented in
Isabelle by featuring a let-clause. Dealing with this richer language prepares the ground for
the applications described in Section 5. To cope with let-expressions, the language of types
introduced in the previous subsection has to be enriched with a universal quantifier, leading
to the distinction between unquantified types and quantified type schemes due to Damas and
Milner [4]. The rules of type inference are shown in Figure 2. The free variables in a type
scheme are denoted by T V(σ). A is a finite mapping from identifiers to type schemes and
T V(A) denotes the free type variables in the range of A. These rules are almost identical to
the system DM’ due to Clément et al. [2], except for the definition of generic instantiation.
In contrast to unsorted polymorphism, where type schemes may be instantiated by arbitrary
types, order-sorted polymorphism requires that the instantiation is sort-correct:

∀αs1
, . . . , αsn

.τ � τ [τ1/αs1
, . . . , τn/αsn

]

if each τi is of sort si with respect to the type signature, which, as usual, remains implicit and
fixed. Unsorted polymorphism can be recovered by having just a single sort, say >, and exactly
one declaration t : (>, . . . ,>)> for each type constructor.

The above inference rules can be turned into a type inference algorithm simply be interpret-
ing them as Horn clauses and using Prolog technology. In particular this means that guessing
the right instantiation in ASM is replaced by unification. More precisely, generic instantiation
simply peels off all universally quantified type variables and replaces them by logical variables in

10

the Prolog sense. The required instantiation is found by order-sorted unification of types during
resolution. Having restricted ourselves to unitary type signatures, there is at most one most-
general unifier and hence principal types exist. A functional implementation of type inference
is obtained if Milner’s algorithm W [17] is used with order-sorted unification.

In Isabelle, type inference takes place with respect to some theory containing sorts, types
and constants. The sorts and types section determines the type signature and the consts
declarations the initial environment A.

3.3 Higher-Order Unification

We now turn from the static analysis to Isabelle’s equivalent of execution, higher-order resolu-
tion, which is the heart of Isabelle’s inference engine. Its central component is an implemen-
tation of Huet’s higher-order unification procedure [11]. In contrast to type inference, which
extended very smoothly to order-sorted polymorphism, the same cannot be said for higher-order
unification. The reason is that type inference in Isabelle-90 already dealt with unsorted poly-
morphism, whereas its unification procedure was a direct implementation of Huet’s algorithm
which is designed for simply typed terms. The difficulties encountered in extending it to cope
with type variables are solely due to polymorphism in its most basic form, i.e. the presence
of type variables; the order-sorted twist is again orthogonal and remains hidden in the type
unification algorithm.

3.3.1 The Problem

The basic problem arises because terms may now contain type variables. The syntax of terms
given in Figure 1 is an impoverished version of the actual Isabelle implementation where ev-
ery variable and constant is tagged with its type, which may contain type variables. This
type information is essential during unification when both term and type variables need to be
instantiated. A simple example demonstrates the difficulty.

Let τ be some base type and α a type variable, let c : τ be a constant and G : α and
F : α → τ be two term variables. The following matching problem is given:

F (G)
?
= c (2)

Let us first look at (some of) the infinitely many solutions to this problem. Every instantiation
of α must be of the form τ1 → · · · → τn → τ ′ for suitable types τ1, . . . , τn and τ ′, where τ ′ is
not a function type. Without any assumptions about α we get the solution F = λx.c. In terms
of Huet’s algorithm this is the solution obtained after a single imitation step. In fact, for any
instantiation of α where τ ′ 6= τ , this is the only solution.

If we also assume that τ ′ = τ , we get the following infinite set of solutions, indexed by n:

F = λx.x(H1(x), . . . ,Hn(x)), G = λx1, . . . , xn.c

The Hi are new free function variables.
Further instantiations of α yield yet more solutions. For example α = τ → τ alone has an

infinite set of independent solutions:

F = λx.xk(c), G = λx.x

is a solution for any natural number k, where xk is the k-fold composition of x.

11

This shows quite drastically that type variables introduce a new degree of freedom into
unification problems. Different type instantiations give rise to completely independent sets of
solutions with greatly varying cardinality (finite vs. infinite). This is not in itself surprising,
but it raises the question how this new freedom should be dealt with. One impractical solution
is to enumerate all possible type instantiations. Isabelle-91, just like λProlog [19], is more
pragmatic: only the simplest type instantiation is tried. This approach is obviously incomplete.
In the above example only the two solutions {F 7→ λx.c} and {F 7→ λx.x,G 7→ c, α 7→ τ}
are found. Nevertheless it is sufficient in practice for reasons discussed at the end of the next
section.

3.3.2 The Algorithm

This section presents the actual higher-order unification algorithm, proves its soundness and a
limited form of completeness. The description is fairly terse and familiarity with Huet’s original
algorithm [11] is helpful. To facilitate the discussion we introduce a bit of notation.

Terms are slightly different from those in Figure 1: there is no let-construct (it can be
replaced by abstraction plus application) and type inference has attached type information to
the constants and variables. Terms are generated from a set of (term) variables V and a set
of constants C by λ-abstraction and application. Free variables are denoted by F , G, and H,
bound variables by x, y and z, constants by c, atoms (C ∪ V) by a and b, and terms by s, t,
and u. Variables and constants are tagged by superscripting: F σ, cτ etc. Note that proper
type schemes cannot occur in a term and σ denotes a type in the sequel. Type decorations are
omitted if they are unimportant. The free term variables in a term t are denoted by FV(t).

We use the following abbreviations: τn → τ stands for τ1 → · · · → τn → τ where τ is
not a function type; λxn.s stands for λx1. . . . λxn.s; a(un) stands for (. . . (a u1) . . .)un. A term
λxk.a(sn) is called rigid if a ∈ C ∪ {xk} and flexible otherwise.

Much of Huet’s algorithm can be “lifted” to terms with type variables by replacing equality
tests by unification of types. Before we present the actual algorithm we show where this näive
lifting breaks down and how we deal with that situation. The problem occurs in the projection
step of Huet’s algorithm. Let the unification problem λxk.F

τn→τ (sn)=? t be given where t is
rigid and τi = σm → σ. Then F can be a projection on its ith argument provided the result
types of σ and τ coincide. If neither σ nor τ are type variables, their result types are σ and τ
and need only be unified. If however, for example, σ is a type variable, it could be instantiated
by any function type with the same result type as τ , leading to the the infinite branching shown
in example (2) above. Isabelle-91 unifies σ and τ regardless of whether they are type variables
or not and produces the single projection substitution {F 7→ λyn.yi(. . .)}. In example 2 this
leads to the second solution α = τ , F = λx.x and G = c.

Let U(τ, τ ′) denote a complete set of unifiers of two types. In case the (implicit) order-sorted
type signature is unitary, the result is a singleton set and can be computed by the algorithm in
Section 3.1 above.

In addition to substitutions for type variables, denoted by θ, there are also substitutions for
term variables, denoted by Θ. Applying a type substitution to a term means applying it to all
type decorations in the term.

We have the following notation for both kinds of substitutions: Dom(θ) denotes the domain
of θ; θ2 ◦ θ1 is the composition λτ.θ2(θ1(τ)); if W is a set of variables then θ1 = θ2 [W] means
θ1α = θ2α for all α ∈ W and θ1 ≤ θ2 [W] means that there is a θ3 such that θ3 ◦ θ1 = θ2 [W].

A unifier of two terms s and t is a pair of substitutions 〈Θ, θ〉 on terms and types respectively

12

such that Θ(θ(s)) and Θ(θ(t)) are equivalent modulo α, β and η-conversion. A unifier of a system
S, i.e. a multiset of unordered pairs (unification problems) s=? t, is defined analogously and is
denoted by U(S). A system S is presolved if every element (s=? t) ∈ S is either

• a flex-flex pair, i.e. both s and t are flexible, or

• solved, i.e. s = λxk.F (xk) and F 6∈ FV(t) ∪ FV(S − {s=? t}),

and both s and t have the same type. If S is presolved, define

~S = {F 7→ t | (λxk.F (xk)
?
= t) ∈ S}.

A pair 〈Θ, θ〉 is a pre-unifier of a system S if U(Θ(θ(S))) 6= {}. The terminology is consistent:
if S is presolved, 〈~S, id〉 is a pre-unifier of S.

Huet’s insight, which transformed higher-order unification from a mere curiosity into com-
putational reality, was that flex-flex pairs need not be solved. This leads to a pre-unification
algorithm where the result is a substitution (the solved pairs) together with a set of satisfiable
constraints (the flex-flex pairs). Our formulation of the pre-unification algorithm is very close

to that of Snyder and Gallier [25]. We use rewrite rules S
θ

=⇒ S′ between systems. The set of

solutions for a system S is given by those θ and presolved T such that S
θ∗

=⇒ T . The solution
to the initial problem is the type substitution θ, the term substitution ~T and the remaining
flex-flex pairs of T .

The actual pre-unification algorithm is given in Figure 3 as a collection of conditional rewrite
rules. The substitution θ records the type instantiation computed by each transformation,
whereas S represents both the current system and the term substitutions obtained so far. S =⇒

T abbreviates S
id

=⇒ T . If Si−1
θi=⇒ Si, i = 1 . . . n, we write S0

θ∗
=⇒ Sn where θ = θn ◦ · · · ◦ θ1.

The rules (D), (V), (S) (“Simplification”), (I) (“Imitation”) and (P) (“Projection”) are very
similar to the ones given by Snyder and Gallier, except that terms need only be in β-normal form,
not in η-expanded form. The rules (T), (TS), and (TP) unify types and are new. (T) unifies
the types of two terms, thus ensuring in particular that s and t can be written as λxk.a(sm) and
λxl.b(un). (TS) unifies the types of two rigid heads. The combination of (T) and (TS) prepares
the ground for the application of (S). (TP) prepares the flexible term in a flex-rigid pair for the
application of (P) by adjusting types. (I) and (P) are immediately followed by (V), eliminating
F . The free variables H in (I) and (P) are new. Note that terms are automatically put into
head normal form after each transformation and that α-conversion remains implicit.

Soundness of the transformation rules relies on the following straightforward lemma:

Lemma 3.3 If S
θ

=⇒ S′ and 〈Θ′, θ′〉 ∈ U(S′), then 〈Θ′, θ′ ◦ θ〉 ∈ U(S).

As a direct consequence we obtain the actual soundness theorem:

Theorem 3.4 If S
θ∗

=⇒ T and T is presolved, then 〈~T , θ〉 is a pre-unifier of S.

To prove completeness we follow Snyder and Gallier in defining a rewrite relation on triples
〈Θ, θ, S〉:

〈Θ, θ, S〉 =⇒ 〈Θ, θ, T 〉

if S =⇒ T via (D), (V) or (S).

〈Θ, θ, S〉 =⇒ 〈Θ ∪ ∆, θ, T 〉

13

s : σ t : τ σ 6= τ θ ∈ U(σ, τ)

{s
?
= t} ∪ S

θ
=⇒ θ({s

?
= t} ∪ S)

(T)

{s
?
= s} ∪ S =⇒ S (D)

F ∈ FV(S) −FV(t)

{λxk.F (xk)
?
= t} ∪ S =⇒ {λxk.F (xk)

?
= t} ∪ {F 7→ t}(S)

(V)

σ 6= τ θ ∈ U(σ, τ)

{λxk.c
σ(sm)

?
=λxl.c

τ (un)} ∪ S
θ

=⇒ θ({λxk.c
σ(sm)

?
=λxl.c

τ (un)} ∪ S)
(TS)

a ∈ C ∪ {xk}

{λxk.a
τ (sn)

?
=λxk.a

τ (un)} ∪ S =⇒ {λxk.si
?
=λxk.ui | i = 1 . . . n} ∪ S

(S)

σ = σm+i → σ′ τ = τn+j → σ′

{λxk.F
σ(sm)=? λxl.c

τ (un)} ∪ S =⇒

{F =? λxm+i.c
τ (Hn+j(xm+i)), λxk.F

σ(sm)=? λxl.c
τ (un)} ∪ S

(I)

a ∈ C ∪ {xl} σ = σm+i → σ′ σj = τp → τ σ′ 6= τ θ ∈ U(σ′, τ)

{λxk.F
σ(sm)

?
=λxl.a(un)} ∪ S

θ
=⇒ θ({λxk.F

σ(sm)
?
=λxl.a(un)} ∪ S)

(TP)

a ∈ C ∪ {xl} σ = σm+i → τ σj = τp → τ

{λxk.F
σ(sm)=? λxl.a(un)} ∪ S =⇒

{F σ =? λxm+i.xj(Hp(xm+i)), λxk.F
σ(sm)=? λxl.a(un)} ∪ S

(P)

Figure 3: Transformations for Pre-Unification

if either S =⇒ T via (I), Θ(F) = λxm+i.c(tn+j) and ∆ = {Hh 7→ λxm+i.th | h = 1 . . . n + j}, or
S =⇒ T via (P), Θ(F) = λxm+i.xj(tp) and ∆ = {Hh 7→ λxm+i.th | h = 1 . . . p}.

〈Θ, θ0, S〉 =⇒ 〈Θ, θ′, T 〉

if S
θ

=⇒ T via (T), (TS) or (TP) and θ0 = θ′ ◦ θ [T V(S)].
The idea is that if 〈Θ, θ〉 ∈ U(S) then 〈Θ, θ〉 can be used to guide the search for a unifier

of S. The following lemmas lead up to the final completeness theorem. Their proofs are very
similar to those of the corresponding results in [25].

Lemma 3.5 If 〈Θ, θ0〉 ∈ U(S) and 〈Θ, θ0, S〉 =⇒ 〈Θ′, θ′, S′〉, then 〈Θ′, θ′〉 ∈ U(S′), Θ =

Θ′ [FV(S)] and there is a θ such that S
θ

=⇒ S′ and θ0 = θ′ ◦ θ [T V(S)].

A substitution θ is called basic if there is no α such that θα is a function type.

Lemma 3.6 Let the underlying type signature be regular. If θ0 is basic, 〈Θ, θ0〉 ∈ U(S) and S
is not presolved, then there are Θ′ and θ′ such that θ′ is basic and 〈Θ, θ0, S〉 =⇒ 〈Θ′, θ′, S′〉.

Proof The proof proceeds by exhaustive case analysis pretty much as in [25]. The only unusual
bit is to show that θ′ is again basic. This is non-obvious if θ0 = θ′ ◦θ [T V(S)] where θ ∈ U(σ, τ).

14

W.l.o.g. we may assume that the domain of θ ′ is minimal, in particular Dom(θ′)∩Dom(θ) = {}.
Let β ∈ Dom(θ′) and hence β 6∈ Dom(θ). We distinguish two cases. If β ∈ T V(S) then
θ′β = θ′θβ = θ0β and hence θ′β is not a function type. If β 6∈ T V(S) then β ∈ T V(θα) for some
α ∈ Dom(θ)∩T V(S) — otherwise the domain of θ ′ is not minimal. Examining the order-sorted
unification algorithm for regular signatures given, for example, by Jouannaud and Kirchner [13]
we see that U(σ, τ) returns only substitutions θ with the property that all new variables in the
range of θ are introduced by weakening. Formally: if β ∈ T V(θα) − T V(σ, τ) then θα = β. In
particular this is obvious for the algorithm in Section 3.1. This means that θ ′β = θ′θα = θ0α
and hence that θ′β is again not a function type. 2

Lemma 3.7 The relation =⇒ on triples is terminating.

Proof The proof is by a decreasing complexity measure 〈M,n, iT + iS + iP 〉 where M and n
are as in [25], i.e. M is the sum of the sizes of Θ(F) for all unsolved F ∈ FV(S), and n is the
sum of the sizes of all terms in S. In addition we have iT , iS and iP which are the number
of unification problems where the rules (T), (TS) and (TP) are applicable. The application of
each of these rules decreases the corresponding counter, cannot increase the other two counters,
and leaves M and n unchanged. 2

It is now routine to prove completeness from the above lemmas:

Theorem 3.8 Let the underlying type signature be regular and let θ0 be basic. If 〈Θ, θ0〉 ∈ U(S)

then there is a presolved T such that S
θ∗

=⇒ T , ~T ≤ Θ [FV(S)], θ ≤ θ0 [T V(S)], and 〈Θ, θ0〉 is
a pre-unifier of the flex-flex pairs in T .

Note that the final condition is necessary to ensure that the remaining flex-flex constraints are
consistent with the initial solution 〈Θ, θ0〉.

The completeness theorem is rather more conservative than the actual algorithm. In many
practical cases it will find all solutions, although some of them require type variables to be
instantiated by function types. But even in its limited form it has some interesting consequences.
For example it implies that higher-order unification is complete for Isabelle’s encoding of first-
order logic (FOL) because the sort system prevents type variables from ranging over function
types. In higher-order logic (HOL), however, there are examples of proofs that are not found
automatically because of the above incompleteness. Such situations occur infrequently and can
always be remedied by user-supplied explicit type instantiations.

As with all unification algorithms expressed as rewrite rules on collections of unification
problems, there are two kinds of nondeterminism during execution: the choice between different
transformations that apply (“don’t know”) and between different unification problems they can
be applied to (“don’t care”). Ideally, all strategies for selecting unification problems should be
equivalent with respect to completeness. For example Huet [11] and Elliott [6] show this quite
explicitly for their algorithms. This result also holds with respect to the limited completeness
theorem above. However, our algorithm is in general not just incomplete but also sensitive
to the selection of unification problems. The point is that (TP) commits to a particular type
instantiation out of an infinite set, thus reducing the solution space. Hence the application of
(TP) should be delayed as long as possible in order to minimize incompleteness. More precisely,
one can give an operational characterization of completeness: the above set of transformation
rules enumerates a complete set of unifiers for a particular unification problem if (TP) need not
be applied in such a way that σ′ or τ are type variables. This means that no solution is lost
if the application of (TP) to a particular unification problem can always be delayed until the
types are sufficiently instantiated.

15

3.4 Optimizations

In this section we briefly consider some simple optimizations of the above rather high-level
algorithm. First we look at issues connected with conversion of λ-terms.

α If De Bruijn notation [5] is used, α-conversion can be ignored completely.

β The question here is mainly how much of the normal form to compute when. As we can see
from the rules, full β-normal form is not required — head-normal form will do. If all terms
are in β-normal form initially, only the application of (V) entails further normalization.

η In contrast to unification for the simply typed λ-calculus, our transformation rules do not
leave terms in η-expanded form because type-variables may become instantiated. Fortunately,
only (S) requires the η-expansion of the head.

Further important optimizations concern the order in which rules are applied. In contrast to
(TP), (T) and (TS) should be performed as soon as possible, to detect nonunifiability by type
clashes. It is in fact sufficient to apply (T) to the input because the remaining rules maintain
the invariant that the two terms of a unification problem have the same type. Rules (S), (I)
and (P) should be tried in the order embodied in Huet’s algorithm.

4 Single-Sorted Modules

This section discusses some more speculative application of order-sorted polymorphism as a
module system. The aim is to support abstract reasoning of the following kind: every group
of index 2 is abelian, the powerset algebra with symmetric difference forms a group of index 2,
hence symmetric difference is commutative. This is a very heavy tool for deriving commutativity
of symmetric difference but it illustrates the point nicely. In general this technique only pays
off if the abstract theory provides enough interesting theorems.

The abstract theory of groups can be axiomatized as follows:

G = HOL + sorts grp < i
consts e : αgrp

i : αgrp → αgrp

m : αgrp → αgrp → αgrp

rules m(e, x) = x
m(i(x), x) = e

m(m(x, y), z) = m(x,m(y, z))

Instead of a particular type grp, we have declared a sort grp which shall represent the collection
of all groups. The operations have become polymorphic, because they must be defined on each
individual group.

Within G one can easily derive consequences of group axioms such as the implication

∀x.m(x, x) = e =⇒ ∀x, y.m(x, y) = m(y, x) (3)

In general one is given an abstract theory A and a concrete theory T which satisfies all the
axioms of A, and one would like a mechanism to transfer theorems proved generically in A to
T . It is possible to treat this situation in the framework of order-sorted polymorphism provided
that the theory abstraction talks only about a single type. Examples include classical algebra

16

up to fields, but exclude vector spaces which involve both an abelian group and a field at the
same time. A theory A with a single abstract type t translates into an Isabelle theory with a
new sort t, no new type, and the polymorphic version of all operations, restricted to types of
sort t. Hierarchies of theories are modelled via the subsort relation, e.g. rng < grp.

Coming back to the example, we would like to identify specific theories as groups and carry
over consequences such as (3). A particular instance of a group is the type form with exclusive-
or as multiplication, identity as inverse, and falsity as unit. This can be expressed very simply
as

Gform = G + types form : grp
rules e ≡ False

i(x) ≡ x
m(x, y) ≡ ¬(x = y)

Note that since form is already known, form : grp is simply considered as an additional
declaration for an old type.

Within Gform it is possible to specialize (3) by replacing e and m by their respective defini-
tions. The premise ∀x.¬(x = x) = False is easily shown to be a theorem and we are left with
the consequence that exclusive-or is commutative: ∀x, y.¬(x = y) = ¬(y = x).

The only problem with this approach is its unsoundness: the declaration form : grp is
not accompanied by any check that the given interpretation of the group operations actu-
ally induces a group structure on form, i.e. that ¬(False = x) = x, ¬(x = x) = False, and
¬(¬(x = y) = z) = ¬(x = ¬(y = z)).

The soundness problem can be avoided by the introduction of two new constructs into
Isabelle’s theory building language: the declaration and instantiation of abstract theories. The
concrete syntax might look somewhat like this:

G = HOL + class grp < i
consts . . .
rules . . .

Gform = G + instance form : grp
definitions e ≡ . . .
theorems ¬(False = x) = x, . . .

It is no coincidence that this resembles type classes and their instantiation in the programming
language Haskell [10]. In the conclusion to their paper [27], Wadler and Blott notice that type
classes are very similar to theories of the OBJ-variety, except that, Haskell being a programming
language, the properties are omitted. In the above extension to Isabelle they have returned via
the rules and theorems section. Note that theorems are qualitatively different from the rest
in that they are not text but actual Isabelle theorems. They need to be supplied as witnesses
to the claim that under the given definitions form is indeed a group.

The meaning of class and instance declarations can be explained by a transformation
into core-Isabelle: class corresponds to sorts, instance to types, and definitions to rules.
In addition, there are a number of well-formedness conditions that have to be met. The most
important one is that the rules for sorts introduced via class are in some sense “closed”: further
extensions of a theory containing the declaration of a class c cannot add new rules constraining
the constants introduced in c. We want to make sure that whenever we talk about groups,
they have exactly those properties listed in the corresponding class declaration. The overall

17

correctness criterion that needs to be satisfied is the following: any theorem provable for c
should also be provable for any instance of c.

Classes are not completely closed as they can be extended hierarchically. Abelian groups
can be introduced as a subclass of groups:

AG = G + class agrp < grp
rules m(x, y) = m(y, x)

At the moment the application of order-sorted polymorphism as a module system is still
in its infancy: no serious attempt has been made to evaluate its usefulness and the class and
instance constructs have not been implemented. Should these ideas prove successful, it may
be desirable to move to classes with multiple parameters to cover abstract many-sorted theories
like vector spaces. This goes beyond order-sorted polymorphism but could be supported by the
notion of qualified types as developed by Mark Jones [12]. Although all these extensions are
unlikely to provide a general solution to the problem of abstract theories, they should be very
convenient for those applications that are within their range. This is analogues to the function
of classes in Haskell: they cannot completely replace a module system like that of Standard
ML [18] but for many simple problems they are easier to use than modules.

5 Applications to Standard ML

Although order-sorted polymorphism was initially designed to express restricted polymorphism
in Isabelle, it subsequently turned out to be equally suitable as a type system for the functional
programming languages Standard ML [18] and Haskell [10]. In this section we explore the
application to the notion of equality types in Standard ML. The treatment of Haskell’s type
classes via order-sorted polymorphism is more involved and can be found elsewhere [20].

Standard ML is a complex language. We analyze only a fragment of its core by reducing it to
Mini-ML as introduced in Section 2. This reduction is obviously feasible for the term language,
but it remains to be seen how the type system can be reduced to order-sorted polymorphism.
The benefits of this reduction are a uniform type inference algorithm and sound criteria for the
existence of principal types.

Order-sorted polymorphism is ideally suited to model Standard ML’s [18] equality types.
They partition the set of all types into those that admit equality and those that do not. The
following type signature yields a precise definition of this distinction:

MLe = sorts >
e < >

types bool : e
int : e
∗ : (>,>)>
∗ : (e, e)e
-> : (>,>)>
ref : (>)e

consts = : αe -> αe -> bool

This expresses quite succinctly that booleans, integers, and all reference types admit equality,
products admit equality iff both components do, and no function type admits equality. Hence

18

e is exactly the set of equality types according to Standard ML. Similarly, the notion of gener-
alization � is precisely the one in Standard ML. Therefore type inference with equality types
is just a special case of type inference in Mini-ML with respect to MLe. It is a straightforward
exercise to check that MLe (and the extensions below) satisfy the requirements of Lemma 3.2.
Hence every typable term has a principal type.

In terms of Standard ML, MLe forms part of the “initial static basis” of the language.
This static basis changes with the introduction of new user-defined types. The sorts and their
ordering ≤ remain fixed as in sorts above. The set of declarations is initially the one shown in
types above but is enriched with every new data type declaration datatype (αn)t = . . . which
automatically adds the declaration t : (>, . . . ,>)>. In case t admits equality in the sense of
Standard ML [18], the declaration t : (e, . . . , e)e is also added. Gunter et al. [8] give a detailed
analysis of the semantics of data types and equality types. They show that if t admits equality,
there is a least subset of the arguments of t that need to be of sort e for the result to be of sort
e.

Standard ML’s other extension to ordinary polymorphism, imperative types, cannot be ex-
plained completely with order-sorted polymorphism alone. However, it is not difficult to recast
Tofte’s treatment of imperative types [26] in an order-sorted framework. For example the sort-
structure becomes the following 4-element lattice

>
/ \

e i
\ /
ei

where i is the sort of imperative types and ei the intersection of e and i. The rule that a type
is imperative iff all its type variables are imperative can also be formulated as an order-sorted
type signature. However, the actual type checking discipline for imperative types [18, 26] does
not quite fit the standard Damas-Milner scheme: when type checking let x = e1 in e2, where
the dynamic execution of e1 might allocate a new reference, only non-imperative type variables
in the type of e1 can be generalized.

6 Conclusion

We have looked at a flexible and convenient type system for the specification of object-logics
with simple type systems. It offers an extension of ML-style polymorphism and automatic
type inference. Where applicable, it makes life considerably easier. The concept of order-
sorted polymorphism has applications beyond Isabelle involving type systems for programming
languages and computer algebra. The former is sketched in Section 5, the latter can be found in
an article by Comon et al. [3] where order-sorted polymorphism (although not under this name)
is further enriched with subtypes. The resulting system is very expressive but type inference
becomes undecidable.

Although a detailed comparison between Isabelle’s order-sorted polymorphism and the con-
cept of type classes in Haskell [20] is beyond the scope of this paper, we should point out the
main difference between the two systems. Haskell’s analogue of sorts are not classes but finite
sets of classes (representing their intersection). Hence the sort structure is always a lattice where
the infimum of two sorts is their union. This makes perfect sense in the Haskell context but
may be too liberal for other applications where the intersection of some sorts might be empty.

19

Nevertheless it is tempting to follow the Haskell approach because it simplifies the declaration
of the sort structure. For example the 4-element lattice at the end of Section 5 can be generated
automatically from the atoms e and i as {}, {e}, {i} and {e, i}. If the sort structure is small and
almost linear, not much is gained by going to the powerset. Further experience with Isabelle’s
sort mechanism may, however, convince us to change it in the direction of Haskell.

Acknowledgements

This work would have been impossible without Larry Paulson who invented Isabelle, provided
constant feed-back, and made valuable comments on draft versions of the paper. Mads Tofte
helped me to understand imperative types in Standard ML.

References

[1] A. Church. A formulation of the simple theory of types. J. Symbolic Logic, 5:56–68, 1940.

[2] D. Clément, J. Despeyroux, T. Despeyroux, and G. Kahn. A simple applicative language:
Mini-ML. In Proc. ACM Conf. Lisp and Functional Programming, pages 13–27, 1986.

[3] H. Comon, D. Lugiez, and P. Schnoebelen. A rewrite-based type discipline for a subset of
computer algebra. J. Symbolic Computation, 11:349–368, 1991.

[4] L. Damas and R. Milner. Principal type schemes for functional programs. In Proc. 9th
ACM Symp. Principles of Programming Languages, pages 207–212, 1982.

[5] N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic
formula manipulation, with application to the Church-Rosser theorem. Indagationes Math-
ematicae, 34:381–392, 1972.

[6] C. Elliott. Higher-order unification with dependent function types. In N. Dershowitz,
editor, Proc. 3rd Int. Conf. Rewriting Techniques and Applications, pages 121–136. LNCS
355, 1989.

[7] K. Futatsugi, J. Goguen, J.-P. Jouannaud, and J. Meseguer. Principles of OBJ2. In Proc.
12th ACM Symp. Principles of Programming Languages, pages 52–66, 1985.

[8] C. A. Gunter, E. L. Gunter, and D. B. MacQueen. An abstract interpretation for ML equal-
ity kinds. In T. Ito and A. R. Meyer, editors, Theoretical Aspects of Computer Software,
pages 112–130. LNCS 526, 1991.

[9] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. In Proc. 2nd IEEE
Symp. Logic in Computer Science, pages 194–204, 1987.

[10] P. Hudak and P. Wadler. Report on the programming language Haskell. Version 1.0, April
1990.

[11] G. Huet. A unification algorithm for typed λ-calculus. Theoretical Computer Science,
1:27–57, 1975.

[12] M. P. Jones. Type inference for qualified types. Technical Report PRG-TR-10-91, Oxford
University Computing Laboratory, 1991.

20

[13] J.-P. Jouannaud and C. Kirchner. Solving equations in abstract algebras: A rule-based
survey of unification. In J.-L. Lassez and G. Plotkin, editors, Computational Logic: Essays
in Honor of Alan Robinson, pages 257–321. MIT Press, 1991.

[14] S. Kaes. Parametric overloading in polymorphic programming languages. In Proc. 2nd
European Symposium on Programming, pages 131–144. LNCS 300, 1988.

[15] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.

[16] J. Meseguer, J. Goguen, and G. Smolka. Order-sorted unification. J. Symbolic Computa-
tion, 8:383–413, 1989.

[17] R. Milner. A theory of type polymorphism in programming. J. Comp. Sys. Sci., 17:348–375,
1978.

[18] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press, 1990.

[19] G. Nadathur. A Higher-Order Logic as the Basis for Logic Programming. PhD thesis,
University of Pennsylvania, Philadelphia, 1987.

[20] T. Nipkow and G. Snelting. Type classes and overloading resolution via order-sorted uni-
fication. In Proc. 5th ACM Conf. Functional Programming Languages and Computer Ar-
chitecture, pages 1–14. LNCS 523, 1991.

[21] L. C. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi, editor, Logic and
Computer Science, pages 361–385. Academic Press, 1990.

[22] L. C. Paulson and T. Nipkow. Isabelle tutorial and user’s manual. Technical Report 189,
University of Cambridge, Computer Laboratory, 1990.

[23] M. Schmidt-Schauß. Computational Aspects of an Order-Sorted Logic with Term Declara-
tions. LNCS 395, 1989.

[24] G. Smolka, W. Nutt, J. Goguen, and J. Meseguer. Order-sorted equational computation.
In H. Aı̈t-Kaci and M. Nivat, editors, Resolution of Equations in Algebraic Structures,
Volume 2, pages 297–367. Academic Press, 1989.

[25] W. Snyder and J. Gallier. Higher-order unification revisited: Complete sets of transforma-
tions. J. Symbolic Computation, 8:101–140, 1989.

[26] M. Tofte. Type inference for polymorphic references. Information and Computation, 89:1–
34, 1990.

[27] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In Proc. 16th
ACM Symp. Principles of Programming Languages, pages 60–76, 1989.

[28] U. Waldmann. Unification in order-sorted signatures. Technical Report 298, Fachbereich
Informatik, Universität Dortmund, 1989.

21

